
ACM ICPC 2016–2017
Northeastern European Regional Contest

Problems Review

December 4, 2016

Problems summary

I Recap: 228 teams, 13 problems, 5 hours,

I This review assumes the knowledge of the problem statements
(published separately on http://neerc.ifmo.ru/ web site)

I Summary table on the next slide lists problem name and stats
I author — author of the original idea
I acc — number of teams that had solved the problem (gray bar

denotes a fraction of the teams that solved the problem)
I runs — number of total attempts
I succ — overall successful attempts rate (percent of accepted

submissions to total, also shown as a bar)

Problems summary (2)
problem name author acc/runs succ

Abbreviation Roman Elizarov 161 /447 36%

Binary Code Niyaz Nigmatullin 5 /76 6%

Cactus Construction Pavel Kunyavsky 8 /20 40%

Delight for a Cat Gennady Korotkevich 1 /2 50%

Expect to Wait Vitaliy Aksenov 62 /208 29%

Foreign Postcards Niyaz Nigmatullin 115 /261 44%

Game on Graph Pavel Kunyavsky 3 /12 25%

Hard Refactoring Elena Kryuchkova 168 /526 31%
Indiana Jones and the
Uniform Cave

Georgiy Korneev 0 /13 0%

Jenga Boom Georgiy Korneev 59 /396 14%

Kids Designing Kids Pavel Mavrin 7 /38 18%

List of Primes Mikhail Dvorkin 12 /28 42%

Mole Tunnels Borys Minaiev 2 /4 50%

Problem A. Abbreviation

Total
time

0h 1h 2h 3h 4h 5h

161

286

Java C++ Python Total

Accepted 9 142 10 161
Rejected 39 230 17 286

Total 48 372 27 447

solution team att time size lang

Fastest 1 16 2,015 C++
Shortest 1 19 386 Python
Max atts. 9 292 4,689 C++

Problem A. Abbreviation

I One of the two simple problems in the contest

I Many ways to write a solution
I One of the ways is this:

I Split each line into words and separators
I Identify capitalized words per problem statement
I Find the longest sequences of two or more words separated by

a single space
I Perform replacements per the problem statement

I The shortest solution from Ural Federal University 4
(Ankudinov, Borzunov, Stikhin) uses a single regular
expression with a replacement function:

re.sub(r’\b[A-Z][a-z]+([A-Z][a-z]+\b)+’, abbr, text)

Problem B. Binary Code

Total
time

0h 1h 2h 3h 4h 5h

5
71

Java C++ Python Total

Accepted 1 4 0 5
Rejected 1 70 0 71

Total 2 74 0 76

solution team att time size lang

Fastest 2 204 4,918 Java
Shortest 2 204 4,918 Java
Max atts. 5 205 4,940 C++

Problem B. Binary Code

I Solution outline: solve the problem by converting it into an
instance of 2-SAT problem

1. Build a trie of the given strings
2. Define two variables v0

i and v1
i = v̄1

i for each word si that
contains a “?”

I v 0
i is true and v 1

i is false when “?”is replaced with “0”in si
I v 0

i is false and v 1
i is true when “?”is replaced with “1”in si

3. Create a graph with two nodes for each string. One node for
v0
i , the other for v1

i

4. Use the trie to convert binary code constraints into 2-SAT
problem instance using implications

5. Use the classical 2-SAT solution algorithm via the graph
algorithm to find strongly connected components in
implications graph

Problem B. Binary Code — Build a trie

I Follow the classic approach, build a binary trie

I For strings with “?”add both replacements for “?”into a trie

I At the terminal nodes for the string s with “?”put the
corresponding variable (s0 or s1 depending on replacement)

I At the terminal nodes for the string s without “?”put the
separate variable T that is always true

I If more than one string without “?”ends at the same node of
the trie, the answer is “NO”

Problem B. Binary Code — Trie example

I Trie for the first example

root

a0

b0

a1

c0

b1

d0

c1

d1

a: 00?
b: 0?00
c: ?1
d: 1?0

Implications
a0 nand b0:

a0 → b1

b0 → a1

c0 nand b1:
c0 → b0

b1 → c1

c1 nand d1:
c1 → d0

d1 → c0

Problem B. Binary Code — Implications graph example

a0 b0 c0 d0

a1 b1 c1 d1

I Classic 2-SAT
algorithm finds the
answer or decides
that it is impossible

I The sample output
assigns true to a0, b1,
c1, d0

Problem B. Binary Code — Many terminals at node

v1, v2, v3, · · · , vn

I Node in a trie can have many terminals
(variables) at one node

I At most one of them can be present in a
binary code

I We can express this constraint in O(n)
implications using n additional variable
pairs

I Define additional variable ri to be true if
and only if at least one vj , j ≥ i is true

I Or exclude all vi and vj pairs, but return
“NO”answer when n is more than the
depth of this node in a trie plus one

Problem C. Cactus Construction

Total
time

0h 1h 2h 3h 4h 5h

8

12

Java C++ Python Total

Accepted 0 8 0 8
Rejected 0 12 0 12

Total 0 20 0 20

solution team att time size lang

Fastest 1 142 4,953 C++
Shortest 1 261 2,512 C++
Max atts. 4 275 6,786 C++

Problem C. Cactus Construction (1)

I Depth-first search (DFS) of the cactus to split the edges of
the cactus into disjoint sets of bridges Bi and cycles Ci

I Each back edge found during DFS signals a cycle
I All edges that do not belong to any cycle are bridges

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

C1

C2

C3

C4

B1

B2

Problem C. Cactus Construction (2)

I Recursive procedure: given a cactus and a vertex P in it,
construct the cactus in such a way that all vertices have color
2 except P, which must have color 1.

I Pick any vertex as P to start the procedure.

P

Problem C. Cactus Construction (3)

I If there’s a bridge Bi connecting P with some other vertex Q:
I Remove the bridge Bi .
I Recursively construct two halves using P and Q as designated

vertices (color 1).
I Build edge Bi and color Q with 2 (more details later).

B1

P

Q

Problem C. Cactus Construction (4)
I If there’s a cycle Ci passing through P = P1, P2, . . . , Pk :

I Remove all edges of Ci .
I Graph splits into k components. Recursively construct them

using Pj as designated vertices (color 1).
I Build all edges of Ci and color P2, P3, . . . , Pk with 2 (more

details later).

P P2

P3

C2

Problem C. Cactus Construction (5)

I How to build a new bridge connecting two components with
designated vertices P and Q:

I Initially P and Q are colored with 1, the rest with 2.
I Recolor 1 to 3 in the component of Q.
I Join components of P and Q.
I Connect colors 1 an 3, connecting P and Q.
I Recolor 3 to 2.

1

1

1

3

1

3

1

2

Problem C. Cactus Construction (6)

I How to build a new cycle connecting k components with
designated vertices P = P1, P2, . . . Pk :

I Build edges of the cycle one by one, starting with the edge
between P1 and P2.

I Each edge except the last one is built as a new bridge.
I But remember to recolor the first vertex P1 to 4 instead of 2

after building the first edge.
I This allows to close the cycle in the end by connecting colors 1

and 4.

1 1

11

4 1

11

4 2

21

1 2

22

Problem D. Delight for a Cat

Total
time

0h 1h 2h 3h 4h 5h

1

1

Java C++ Python Total

Accepted 0 1 0 1
Rejected 0 1 0 1

Total 0 2 0 2

solution team att time size lang

Fastest 1 123 2,825 C++
Shortest 1 123 2,825 C++
Max atts. 1 123 2,825 C++

Problem D. Delight for a Cat

I Out of every k consecutive hours, the cat must sleep at least
mins hours and eat at least mine hours

I Let maxe = k −mins , now the cat must eat between mine and
maxe hours out of every k

I Let’s say that the cat is sleeping by default, and it gets
δi = ei − si delight for eating at hour i

I In the end, add
n∑

i=1

si to the answer

Problem D. Delight for a Cat (2)

I Let mine = 0, maxe = 1
I Dynamic programming:

I Let fi be the maximum amount of delight for hours from i to n
I fi = max(fi+1, δi + fi+k)
I Here, we define fi = 0 for i > n

I Dynamic programming → shortest path:
I Vertices S , T and 1, 2, · · · , n
I Edge from vertex i to vertex i + 1 (or T , if i + 1 > n) with

cost 0
I Edge from vertex i to vertex i + k (or T , if i + k > n) with

cost −δi
I Edges from vertex S to vertices 1, 2, · · · , k with cost 0
I Negated length of the shortest path from S to T is the answer

Problem D. Delight for a Cat (3)

I Let mine = 0, maxe ≥ 0
I Graph for maxe = 1 → network for maxe ≥ 0:

I Vertices S , T and 1, 2, · · · , n
I Edge from vertex i to vertex i + 1 (or T , if i + 1 > n) with

cost 0 and capacity maxe
I Edge from vertex i to vertex i + k (or T , if i + k > n) with

cost −δi and capacity 1
I Edges from vertex S to vertices 1, 2, · · · , k with cost 0 and

capacity ∞
I Negated minimum cost of flow of value maxe from S to T is

the answer

Problem D. Delight for a Cat (4)

I Let maxe ≥ mine ≥ 0
I Network for mine = 0 → network for mine ≥ 0:

I Vertices S , T and 1, 2, · · · , n
I Edge from vertex i to vertex i + 1 (or T , if i + 1 > n) with

cost 0 and capacity maxe −mine

I Edge from vertex i to vertex i + k (or T , if i + k > n) with
cost −δi and capacity 1

I Edges from vertex S to vertices 1, 2, · · · , k with cost 0 and
capacity ∞

I Negated minimum cost of flow of value maxe from S to T is
the answer

Problem E. Expect to Wait

Total
time

0h 1h 2h 3h 4h 5h

62

146

Java C++ Python Total

Accepted 3 59 0 62
Rejected 3 143 0 146

Total 6 202 0 208

solution team att time size lang

Fastest 1 61 2,093 C++
Shortest 1 115 1,274 C++
Max atts. 6 285 2,167 C++

Problem E. Expect to Wait

0

+1

-6

+2

-1

+5

-6

+4

balance

t

Problem E. Expect to Wait (2)

-2

+1

-6

+2

-1

+5

-6

+4

balance

t

Problem E. Expect to Wait (3)

I For bi , calculate square under line balance = −bi

I Scan-line

I O(NlogN + QlogQ)

Problem F. Foreign Postcards

Total
time

0h 1h 2h 3h 4h 5h

115

146

Java C++ Python Total

Accepted 3 112 0 115
Rejected 17 126 3 146

Total 20 238 3 261

solution team att time size lang

Fastest 1 23 1,774 C++
Shortest 1 68 483 C++
Max atts. 15 281 1,030 C++

Problem F. Foreign Postcards

I Ai is the expected number of W’s starting from position i .

I Ai = 1
n−i

n∑
j=i+1

Aj + |{k | k ∈ [i , j) ∧ Si 6= Sk}|

I Straightforward calculation — O(N2) solution.

I The second sum is
n∑

j=i+1
[Si 6= Sj] · (n − j)

I It is equal to either
∑

Sj=C

(n − j) or
∑

Sj=W

(n − j)

I Calculate everything in linear time, O(N) solution.

Problem G. Game on Graph

Total
time

0h 1h 2h 3h 4h 5h

3

9

Java C++ Python Total

Accepted 0 3 0 3
Rejected 0 9 0 9

Total 0 12 0 12

solution team att time size lang

Fastest 7 174 3,103 C++
Shortest 2 221 2,023 C++
Max atts. 7 174 3,103 C++

Problem G. Game on Graph

I Let’s name a pair of vertex and player who has move now a
position in game.

I If first player can enforce draw, regardless of second player
moves, he will do it.

I If second player can enforce his winning, regardless of first
player moves, he will do it.

I If first player can’t enforce draw, second player will not allow
draw happen, because it’s worst result for him

I If second player can’t enforce winning, first player will not
allow him to win, because it’s worst result for him.

I So, in all other positions, first player will win.

Problem G. Game on Graph (2)

I How to find all positions, where first player can enforce draw?

I Let’s put in queue all positions, where player have no moves.

I While queue is not empty, get next position from queue.

I If it’s first player turn, than mark all positions of second player
with move to this posision and put them to queue.

I If it’s second player turn, than mark all positions of first
player, where it’s last move to non-marked positions, and put
them to queue.

I First player can enforce draw, iff position is not marked.

I Postions, where second player can enforce win, can be found
in similar way.

Problem H. Hard Refactoring

Total
time

0h 1h 2h 3h 4h 5h

168

358

Java C++ Python Total

Accepted 10 154 4 168
Rejected 29 318 11 358

Total 39 472 15 526

solution team att time size lang

Fastest 1 20 1,982 C++
Shortest 2 109 1,303 Python
Max atts. 11 242 2,721 C++

Problem H. Hard Refactoring

I It is an easy problem. The hardest part is parsing

I Once input is parsed, it is Ok to simply fill a Boolean array of
216 items, then print the answer

I The only tricky thing in this problem are the edges of the set
of 16-bit integers and the corresponding samples are given in
the problem statement

Problem I. Indiana Jones and the Uniform Cave

Total
time

0h 1h 2h 3h 4h 5h

13

Java C++ Python Total

Accepted 0 0 0 0
Rejected 0 13 0 13

Total 0 13 0 13

Problem I. Indiana Jones and the Uniform Cave

I Solution overview: use depth-first-search (DFS) to recursively
traverse the graph

I Mark with “right”chambers on the current DFS path to root.
Let us call them gray chambers

I Mark with “left”chambers that were already visited. Let us
call them black chambers

I At each node do “1 right 1” m times to check all outgoing
passages

I Keep the track of the highest gray (“right”) chamber
encountered down from the current chamber in dfs and the
number of the corresponding passage in the chamber

I When all m passages out of the chamber are visited, follow to
that chamber until gray (“right”) chamber is encountered
and follow down to the previous chamber

Problem I. Indiana Jones and the Uniform Cave (2)

I When gray (“right”) chamber is encountered:

I Mark it with “left”

I Follow gray (“right”) chambers with
“0 right 0” until the chamber previously
marked with “left”is reached

I Count the number of passages visited

I Make another pass, taking one fewer passage to
“backtrack” and put stones at “right”again

I Remember how many gray chambers up the
path we’ve got to!

Problem I. Indiana Jones and the Uniform Cave (3)

I When black (“left”) chamber is encountered:

I Follow black (“left”) chambers with
“0 left 0”

I Follow gray (“right”) chambers with
“0 right 0”

I Count the number of passages visited

I Make another pass, taking one fewer passage to
“backtrack”

I Put stones at “right”or “left”as they were

I Remember how many gray chambers up the
path we’ve got to!

Problem I. Indiana Jones and the Uniform Cave (4)

I When leaving the chamber in dfs (after visiting
all m passages), use the passage that is leading
to the highest gray chamber

I Stones were properly left in place previously, just
follow them

I Mark the chamber we are leaving as black
(“left”)

Problem J. Jenga Boom

Total
time

0h 1h 2h 3h 4h 5h

59
337

Java C++ Python Total

Accepted 2 57 0 59
Rejected 21 316 0 337

Total 23 373 0 396

solution team att time size lang

Fastest 1 55 1,919 C++
Shortest 1 138 1,707 C++
Max atts. 14 198 2,669 C++

Problem J. Jenga Boom

I The solution is straightforward

I Keep the sum of coordinates of centers of remaining blocks at
each level

I Keep the set of remaining blocks (in a Boolean array)
I When a block is removed, update this information, then

recheck stability condition for every level (top to bottom)
I Sum centers of masses and count total number of blocks

above the current cross-section
I Use the set of remaining block at the level immediately below

the current corss-section to compute its convex hull in a trivial
way

I Some tips
I The number w is irrelevant to the problem
I It is easier to compute everything in 64-bit integer numbers
I Do not do binary search on answer! Simulate every block

removal

Problem K. Kids Designing Kids

Total
time

0h 1h 2h 3h 4h 5h

7

31

Java C++ Python Total

Accepted 0 7 0 7
Rejected 3 28 0 31

Total 3 35 0 38

solution team att time size lang

Fastest 1 133 3,236 C++
Shortest 1 258 2,613 C++
Max atts. 4 252 3,682 C++

Problem K. Kids Designing Kids

I Find the top-left freckle in each of three given pictures.

I We’ll prove that after moving the figures, some two of these
three freckles must be in the same point.

I There are only three possible shifts, check them all.

I To check if two pictures are the same, again find top-left
freckles in each of them. These freckles must be in the same
point.

Problem K. Kids Designing Kids — Proof

I Problem is equal to the following: move figures A, B and C in
such a way that A⊕ B ⊕ C = ∅ (empty figure).

I Let’s look on top-left freckle in each picture. Suppose that
after moving, they are in different points.

I Now let’s find the top-left freckle from these three.

I This freckle will be present in the final symmetrical difference
A⊕ B ⊕ C , because it cannot be denied by any other freckle.

Problem L. List of Primes

Total
time

0h 1h 2h 3h 4h 5h

12

16

Java C++ Python Total

Accepted 0 12 0 12
Rejected 0 16 0 16

Total 0 28 0 28

solution team att time size lang

Fastest 1 108 3,093 C++
Shortest 1 108 3,093 C++
Max atts. 4 294 4,471 C++

Problem L. List of Primes

I Recursive procedure — output all sets with the following
properties:

I from the first x primes the set prefix is selected;
I all the other selected primes add up to sum.

I output(x , prefix , sum)
I output(x + 1, prefix + [px+1], sum − px+1)
I output(x + 1, prefix , sum)

I If the output is to left from the desired segment, skip it
without going deeper in recursion.

I Precalculte number and total length of all sets in which:
I the first x primes are not used;
I selected primes add up to sum.

I Run output(0, [], sum) for sum = 2, 3, 4, . . .

Problem M. Mole Tunnels

Total
time

0h 1h 2h 3h 4h 5h

2

2

Java C++ Python Total

Accepted 0 2 0 2
Rejected 0 2 0 2

Total 0 4 0 4

solution team att time size lang

Fastest 3 215 3,397 C++
Shortest 1 227 2,185 C++
Max atts. 3 215 3,397 C++

Problem M. Mole Tunnels

I Cannot be solved with Minimum Cost Maximum Flow
algorithm (too slow)

I We need to find shortest path in a faster way

I Calculate dynamic programming: shortest path in a subtree of
vertex v

I Iterate over all possible LCA to find next shortest path

I After sending flow along augmenting path dynamic
programming values changes only for at most 40 vertices

1

2 3

4 5

Credits

I Special thanks to all jury members and assistants
(in alphabetic order):

Alexey Cherepanov, Andrey Lopatin, Andrey Stankevich,
Artem Vasilyev, Borys Minaiev, Demid Kucherenko,
Dmitry Shtukenberg, Egor Kulikov, Elena Andreeva,

Elena Kryuchkova, Eugene Kurpiliansky, Gennady Korotkevich,
Georgiy Korneev, Ilya Kornakov, Maxim Buzdalov, Mikhail Dvorkin,
Mikhail Pyaderkin, Nikita Ioffe, Niyaz Nigmatullin, Oleg Davydov,
Pavel Kunyavsky, Pavel Mavrin, Petr Mitrichev, Roman Elizarov,

Sergey Kopeliovich, Sergey Melnikov, Vitaly Aksenov

