ICPC 2024–2025 Northwestern Russia Qualification — Tutorial

ITMO, SPb SU, PetrSU, MAU, Online

2024-10-27

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

The fastest way to try to eat from an empty can is to empty a can and then reach it! It requires $n + 1$ minutes.

- The fastest way to try to eat from an empty can is to empty a can and then reach it! It requires $n + 1$ minutes.
- The longest way is to eat everything first and then take any can. It uses $kn + 1$ minutes.

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

Application List

Create a char table: 26 cells, initialized with a dot in each.

Application List

- Create a char table: 26 cells, initialized with a dot in each.
- Iterate through all the programs and mark all the first letters in the corresponding cell \bullet of the table.

Application List

- Create a char table: 26 cells, initialized with a dot in each.
- Iterate through all the programs and mark all the first letters in the corresponding cell \bullet of the table.
- Output the 26 cells of the table in 5 rows. \bullet

Plenty of ways to approach:

parse the expression…

Plenty of ways to approach:

- parse the expression...
- check length of the string: $f(1) = 4$, $f(k) = 2f(k 1) + 1$ (with special case $f(0) = 2$)
- count the total number of ", ": $c(k) = 2^{k-1} 1$ (with special case $n = 0$)
- count something, then use \log_2 of it to find the answer

Plenty of ways to approach:

- parse the expression...
- check length of the string: $f(1) = 4$, $f(k) = 2f(k 1) + 1$ (with special case $f(0) = 2$)
- count the total number of ", ": $c(k) = 2^{k-1} 1$ (with special case $n = 0$)
- count something, then use \log_2 of it to find the answer
- track the bracket balance, then count "," in the outermost set (with special case $n = 0$)
- \bullet track the bracket balance, then count " $\{$ " in the outermost set
- \bullet track the bracket balance, then find maximum balance

Plenty of ways to approach:

- parse the expression...
- check length of the string: $f(1) = 4$, $f(k) = 2f(k 1) + 1$ (with special case $f(0) = 2$)
- count the total number of ", ": $c(k) = 2^{k-1} 1$ (with special case $n = 0$)
- count something, then use \log_2 of it to find the answer
- track the bracket balance, then count "," in the outermost set (with special case $n = 0$)
- \bullet track the bracket balance, then count " $\{$ " in the outermost set
- \bullet track the bracket balance, then find maximum balance

…

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

 \bullet Since the role of A must be present and unique for each task, check that each row contains exactly one letter A .

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

Triangle on the Axis

$$
\text{Area of the triangle} = \frac{\text{Base} \times \text{Height}}{2}
$$

Triangle on the Axis

$$
\text{Area of the triangle} = \frac{\text{Base} \times \text{Height}}{2}
$$

Let's assume that the base is the side lying on the Ox, and the height is the absolute value of the y-coordinate of the third vertex.

Triangle on the Axis

Area of the triangle =
$$
\frac{\text{Base} \times \text{Height}}{2}
$$

- Let's assume that the base is the side lying on the Ox, and the height is the absolute value of the y-coordinate of the third vertex.
- Then we will look for the first two vertices as the leftmost and rightmost (on Ox), and the third as the vertex with the largest y-coordinate by absolute value.

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

There are two solutions. The first one is to implement the process described in the problem statement. Basically any implementation will work within the time and memory limits.

- There are two solutions. The first one is to implement the process described in the problem statement. Basically any implementation will work within the time and memory limits.
- There is another approach that requires almost no coding but spends more time analyzing the problem on paper.

- There are two solutions. The first one is to implement the process described in the problem statement. Basically any implementation will work within the time and memory limits.
- There is another approach that requires almost no coding but spends more time analyzing the problem on paper.
- Intuitively, the answer is always very small. Surely, it is below 10. One may notice that, in all four samples, the answer is either 0 or 1.

- There are two solutions. The first one is to implement the process described in the problem statement. Basically any implementation will work within the time and memory limits.
- There is another approach that requires almost no coding but spends more time analyzing the problem on paper.
- Intuitively, the answer is always very small. Surely, it is below 10. One may notice that, in all four samples, the answer is either 0 or 1.
- As it turns out, the answer is always either 0 or 1. Moreover, it is 1 if and only if the second string in the input is "1101111".

- There are two solutions. The first one is to implement the process described in the problem statement. Basically any implementation will work within the time and memory limits.
- There is another approach that requires almost no coding but spends more time analyzing the problem on paper.
- Intuitively, the answer is always very small. Surely, it is below 10. One may notice that, in all four samples, the answer is either 0 or 1.
- As it turns out, the answer is always either 0 or 1. Moreover, it is 1 if and only if the second string in the input is "1101111".
- It turns out that "1101111" is the only case when something interesting can even happen with the second digit of the number. Moreover, "1101111" in the second digit ensures that 9 and 8 always look like 5 and 6 (because leading zeroes are not displayed).

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

Programmers and Stones

• If all the sizes of piles are even, person whose turn is now loses. Why? Because if they take a stone from some piles, the second person may take a stone from the same piles, and continue playing this way.

Programmers and Stones

- If all the sizes of piles are even, person whose turn is now loses. Why? Because if they take a stone from some piles, the second person may take a stone from the same piles, and continue playing this way.
- Conversely, if there are some odd piles, person whose turn is now wins. How? They just take a stone from every pile of odd size.

Programmers and Stones

- If all the sizes of piles are even, person whose turn is now loses. Why? Because if they take a stone from some piles, the second person may take a stone from the same piles, and continue playing this way.
- Conversely, if there are some odd piles, person whose turn is now wins. How? They just take a stone from every pile of odd size.
- We just need to check if there is any odd number among $a_i.$ Time complexity is $O(n).$

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

We try to place 1 in the first position; if we succeed, we do it.

- We try to place 1 in the first position; if we succeed, we do it.
- Otherwise, we try to place 2 in the first position; if we succeed, we do it. \bullet

- We try to place 1 in the first position; if we succeed, we do it.
- Otherwise, we try to place 2 in the first position; if we succeed, we do it. \bullet
- And so on up to 9. \bullet

- We try to place 1 in the first position; if we succeed, we do it.
- Otherwise, we try to place 2 in the first position; if we succeed, we do it. \bullet
- And so on up to 9. \bullet
- Then we move to the second position and the digit at that position.

- We try to place 1 in the first position; if we succeed, we do it.
- Otherwise, we try to place 2 in the first position; if we succeed, we do it. \bullet
- And so on up to 9. \bullet
- Then we move to the second position and the digit at that position. \bullet
- If we use a Fenwick tree or a segment tree to count the number of used digits in the segment, the complexity will be $O(n \ln(n))$.

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)
You are given an array and a pointer

- You are given an array and a pointer
- It is allowed to move the pointer to new place if all numbers between the old and the new positions are congruent modulo some number greater than one

- You are given an array and a pointer
- It is allowed to move the pointer to new place if all numbers between the old and the new positions are congruent modulo some number greater than one
- Move the pointer to the given position in the minimum number of steps

Notice we never need to move away from the target position of the pointer

- Notice we never need to move away from the target position of the pointer
- **O** Greedy approach

- Notice we never need to move away from the target position of the pointer
- **•** Greedy approach
- Notice that the set of all taxis that can get from i to j is the set of common divisors of \bullet $a_k - a_i, k \in [i; j]$

- Notice we never need to move away from the target position of the pointer
- **•** Greedy approach
- Notice that the set of all taxis that can get from i to j is the set of common divisors of \bullet $a_k - a_i, k \in [i; j]$
- Let us calculate the gcd of such numbers a_k-a_i until it becomes equal to 1 $-$ at this point we have to switch to start a new jump

- Notice we never need to move away from the target position of the pointer
- **O** Greedy approach
- Notice that the set of all taxis that can get from i to j is the set of common divisors of \bullet $a_k - a_i, k \in [i; j]$
- Let us calculate the gcd of such numbers a_k-a_i until it becomes equal to 1 $-$ at this point we have to switch to start a new jump
- If $\left|a_{i}-a_{i+1}\right|=1,$ this is an impassable obstacle (the only one)

Outline

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

[Credits](#page-80-0)

 \bullet Let t denote the answer. Consider all the times we flip switches.

- \bullet Let *t* denote the answer. Consider all the times we flip switches.
- \bullet The final flip at moment t is aimed to turn on internet anywhere and does not convey any information, so we can ignore it.

- \bullet Let *t* denote the answer. Consider all the times we flip switches.
- \bullet The final flip at moment t is aimed to turn on internet anywhere and does not convey any information, so we can ignore it.
- We can distinguish two candidate houses if sequences of flips on these houses differ.

- \bullet Let *t* denote the answer. Consider all the times we flip switches.
- \bullet The final flip at moment t is aimed to turn on internet anywhere and does not convey any information, so we can ignore it.
- We can distinguish two candidate houses if sequences of flips on these houses differ.
- \bullet We can not have more than 2k flips per house and there are t moments to make them.

- \bullet Let *t* denote the answer. Consider all the times we flip switches.
- \bullet The final flip at moment t is aimed to turn on internet anywhere and does not convey any information, so we can ignore it.
- We can distinguish two candidate houses if sequences of flips on these houses differ.
- We can not have more than 2k flips per house and there are t moments to make them. \bullet
- Thus, $n \leq \sum_{j \leq 2k} \Bigl(\frac{t}{j} \Bigr)$ $\binom{t}{j}.$ Our real task is to find the smallest t that satisfies this condition.

- \bullet Let *t* denote the answer. Consider all the times we flip switches.
- \bullet The final flip at moment t is aimed to turn on internet anywhere and does not convey any information, so we can ignore it.
- We can distinguish two candidate houses if sequences of flips on these houses differ.
- We can not have more than 2k flips per house and there are t moments to make them.
- Thus, $n \leq \sum_{j \leq 2k} \Bigl(\frac{t}{j} \Bigr)$ $\binom{t}{j}.$ Our real task is to find the smallest t that satisfies this condition.
- It could be done via binary search.

- \bullet Let *t* denote the answer. Consider all the times we flip switches.
- \bullet The final flip at moment t is aimed to turn on internet anywhere and does not convey any information, so we can ignore it.
- We can distinguish two candidate houses if sequences of flips on these houses differ.
- \bullet We can not have more than 2k flips per house and there are t moments to make them.
- Thus, $n \leq \sum_{j \leq 2k} \Bigl(\frac{t}{j} \Bigr)$ $\binom{t}{j}.$ Our real task is to find the smallest t that satisfies this condition.
- It could be done via binary search.
- Let $f(t,k)\coloneqq \sum_{j\leq 2k} \Bigl(\frac{t}{j}$ $\binom{t}{j}.$ The values $f(t, 1)$ are computable in constant time. For bigger k , it is useful to precompute the answers for inputs such that $f(t, k) \leq 10^{18}$.

Outline

1. Problem [A](#page-1-0)

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

[Credits](#page-80-0)

 \bullet Imagine we know that some vertex v is the leaf of the tree. How to check it and find its adjacent vertex u ?

- Imagine we know that some vertex v is the leaf of the tree. How to check it and find its \bullet adjacent vertex u ?
- u is the vertex with smallest $d_{v,u}.$ Then we need to check that, for all other vertices $w,$ $d_{v,w} = d_{u,w} + d_{v,u}.$

- Imagine we know that some vertex v is the leaf of the tree. How to check it and find its \bullet adjacent vertex u ?
- u is the vertex with smallest $d_{v,u}.$ Then we need to check that, for all other vertices $w,$ $d_{v,w} = d_{u,w} + d_{v,u}.$
- \bullet How to find a leaf? We may take any vertex v and then find a vertex u with the largest $d_{v,u}.$ The vertex u is necessarily a leaf then.

- Imagine we know that some vertex v is the leaf of the tree. How to check it and find its \bullet adjacent vertex u ?
- u is the vertex with smallest $d_{v,u}.$ Then we need to check that, for all other vertices $w,$ $d_{v,w} = d_{u,w} + d_{v,u}.$
- \bullet How to find a leaf? We may take any vertex v and then find a vertex u with the largest $d_{v,u}.$ The vertex u is necessarily a leaf then.
- After that, we may drop this leaf and continue this process for other vertices. The time complexity is $O(n^2)$.

- Imagine we know that some vertex v is the leaf of the tree. How to check it and find its \bullet adjacent vertex u ?
- u is the vertex with smallest $d_{v,u}.$ Then we need to check that, for all other vertices $w,$ $d_{v,w} = d_{u,w} + d_{v,u}.$
- \bullet How to find a leaf? We may take any vertex v and then find a vertex u with the largest $d_{v,u}.$ The vertex u is necessarily a leaf then.
- After that, we may drop this leaf and continue this process for other vertices. The time complexity is $O(n^2)$.
- Alternatively, we may find a minimal spanning tree, and then note that this tree should be exactly the tree in which we calculated the distances.

Outline

1. Problem [A](#page-1-0)

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

[Credits](#page-80-0)

Let us try simulation first:

- for each value of i:
- o for each if:
- process it
- way too slow

What are we lacking?

Let us try simulation first:

- for each value of i:
- for each if:
- process it
- way too slow

What are we lacking?

- find the next value of i when something happens, fast \bullet
- find the next if where something happens, fast \bullet

Now, consider a faster simulation:

- consider ifs as pairs $(x_j^{},\rm\,line\, number)$
- store these pairs in a set \bullet
- to find the next event, we have to consider the upper bound of the current position
- we can count the number of operations from (i , old line) to (x_j , new line) in $O(1)$

Turns out this is already fast enough. Why?

Now, consider a faster simulation:

- consider ifs as pairs $(x_j^{},\rm\,line\, number)$
- store these pairs in a set \bullet
- \circ to find the next event, we have to consider the upper bound of the current position
- we can count the number of operations from (i , old line) to (x_j , new line) in $O(1)$ Turns out this is already fast enough. Why?
- Lemma: if we enter some if twice, we got into an infinite loop
- indeed, after we execute the if body, everything will be exactly as before \bullet
- so, we enter each if at most once, or detect an infinite loop \bullet

Outline

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

[Credits](#page-80-0)

• The intended solutions work in $O(r + g + b)$ time. The simplest linear solution is based on the following idea.

- The intended solutions work in $O(r + g + b)$ time. The simplest linear solution is based on the following idea.
- Red balls split the whole line into either $r + 1$, r , or $r 1$ segments, with each such segment consisting of alternating blue and green balls.

- The intended solutions work in $O(r + g + b)$ time. The simplest linear solution is based on the following idea.
- Red balls split the whole line into either $r + 1$, r , or $r 1$ segments, with each such \bullet segment consisting of alternating blue and green balls.
- Segments of even length do not contribute to $g b$ and can be filled in two different \bullet ways.

- The intended solutions work in $O(r + g + b)$ time. The simplest linear solution is based on the following idea.
- Red balls split the whole line into either $r + 1$, r , or $r 1$ segments, with each such segment consisting of alternating blue and green balls.
- Segments of even length do not contribute to $g b$ and can be filled in two different \bullet ways.
- Each segment of odd length either increases $q b$ or decreases it. Enumerate the \bullet number of odd segments.

- The intended solutions work in $O(r + g + b)$ time. The simplest linear solution is based on the following idea.
- Red balls split the whole line into either $r + 1$, r , or $r 1$ segments, with each such segment consisting of alternating blue and green balls.
- Segments of even length do not contribute to $g b$ and can be filled in two different \bullet ways.
- Each segment of odd length either increases $g b$ or decreases it. Enumerate the \bullet number of odd segments.
- Now, we know the numbers of even segments, "green" odd segments (with more green balls than blue balls) and "blue" odd segments.

- The intended solutions work in $O(r + g + b)$ time. The simplest linear solution is based on the following idea.
- Red balls split the whole line into either $r + 1$, r , or $r 1$ segments, with each such segment consisting of alternating blue and green balls.
- Segments of even length do not contribute to $g b$ and can be filled in two different \bullet ways.
- Each segment of odd length either increases $g b$ or decreases it. Enumerate the \bullet number of odd segments.
- Now, we know the numbers of even segments, "green" odd segments (with more green balls than blue balls) and "blue" odd segments.
- Finally, we need to choose the placements and the lengths of the segments. \bullet

Distributing the types of segments is a product of binomial coefficients.

- Distributing the types of segments is a product of binomial coefficients.
- Distributing the lengths is more complicated. But we have already distributed the types.
Balls of Three Colors

- Distributing the types of segments is a product of binomial coefficients.
- Distributing the lengths is more complicated. But we have already distributed the types. \bullet
- Now we have some extra "charges" that allow us to extend the length of some segments by two. Any number of charges can be applied to each given segment.

Balls of Three Colors

- Distributing the types of segments is a product of binomial coefficients.
- Distributing the lengths is more complicated. But we have already distributed the types. \bullet
- Now we have some extra "charges" that allow us to extend the length of some segments by two. Any number of charges can be applied to each given segment.
- This is the famous "combinations with repetitions" problem. The answer is also a binomial coefficient.

Balls of Three Colors

- Distributing the types of segments is a product of binomial coefficients.
- Distributing the lengths is more complicated. But we have already distributed the types. \bullet
- Now we have some extra "charges" that allow us to extend the length of some segments by two. Any number of charges can be applied to each given segment.
- This is the famous "combinations with repetitions" problem. The answer is also a binomial coefficient.
- Alternative solution. There are several ways to prove the following formula: $f(a, b, c) =$ $f(a-1, b-1, c) + f(a-1, b, c-1) + f(a, b-1, c-1) + 2f(a-1, b-1, c-1),$ where $f(r, g, b)$ is the answer to the problem. This also leads to a linear solution.

Outline

2. Problem [B](#page-4-0)

3. Problem [C](#page-8-0)

4. Problem [D](#page-13-0)

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

[Credits](#page-80-0)

Retrograde analysis.

- Retrograde analysis.
- Pieces move symmetrically, so there is no need to store the graph of all moves explicitly.

- Retrograde analysis. \bullet
- Pieces move symmetrically, so there is no need to store the graph of all moves explicitly.
- We can always rotate the board so that the white king would be in the bottom left quarter of the board. It makes the search space 4 times smaller.

- Retrograde analysis. \bullet
- Pieces move symmetrically, so there is no need to store the graph of all moves explicitly.
- We can always rotate the board so that the white king would be in the bottom left quarter of the board. It makes the search space 4 times smaller.
- Additionally, we can use symmetry over the diagonal to get rid of almost a half of the \bullet remaining positions.

Outline

5. Problem [E](#page-15-0)

6. Problem [F](#page-19-0)

7. Problem [G](#page-25-0)

8. Problem [H](#page-29-0)

9. Problem [I](#page-35-0)

10. Problem [J](#page-44-0)

11. Problem [K](#page-52-0)

12. Problem [L](#page-58-0)

13. Problem [M](#page-63-0)

14. Problem [N](#page-75-0)

[Credits](#page-80-0)

Problem Authors

Ivan Bochkov

Nikolay Dubchuk

Nikita Gaevoy

Anastasia Grigorieva

Mikhail Ivanov

Ivan Kazmenko

Anton Maidel

Vladislav Makarov