
ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem A. Asynchronous Processor
Time limit: 2 seconds
Memory limit: 1024 megabytes

You are given a program consisting of n instructions executed by a processor with a single integer
register A, initially equal to 0. Each instruction is one of two types:

• “+ v” — performs A := A+ v;
• “= v” — performs A := v.

The instructions in the program are numbered from 1 to n. Each instruction i initially has timestamp i.

Some instructions are marked as asynchronous. If instruction i is asynchronous, its timestamp can be
changed to any real number greater than i.

After all timestamp adjustments, all timestamps must be distinct. The processor then executes the
instructions in order of increasing timestamp.

Determine the number of distinct final values of A that can be obtained after all instructions have been
executed, considering all possible choices of asynchronous instruction timestamps.

Input
The first line contains an integer n, denoting the number of instructions in the program (1 ≤ n ≤ 2000).

The i-th of the following n lines describes instruction i and contains three tokens. The first token is either
‘+’ or ‘=’, denoting the type of the instruction. The second token is an integer v, denoting the argument
of the instruction (1 ≤ v ≤ 500). Finally, the third token is either “async” if the instruction is marked as
asynchronous, or “sync” otherwise.

Output
Print the number of distinct final values A can take after executing the program.

Examples
standard input standard output

3

+ 1 sync

= 2 async

+ 3 async

2

10

= 7 async

+ 3 async

+ 5 sync

+ 3 async

= 1 sync

+ 9 async

+ 10 async

+ 1 sync

+ 3 async

+ 4 sync

30

Note
In the first test, the program execution starts with instruction 1 setting A to 1. Then, instructions 2 and 3
are executed in one of the two orders:

• if “= 2” is executed before “+ 3”, A will be equal to 5;
• if “+ 3” is executed before “= 2”, A will be equal to 2.

Thus, there are two possible values of A at the end: 5 and 2.

Page 1 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem B. Bounding Boxes
Time limit: 2 seconds
Memory limit: 1024 megabytes

ICPC is considering sending out contest souvenirs via a delivery service. The delivery service provides
multiple types of packing boxes, each shaped as a rectangular parallelepiped.

Unfortunately, there is no way to know which packing box type will be available on the shipping day, so
ICPC needs to choose a souvenir box size that fits inside every packing box.

According to the shipment rules, the souvenir box must also be a rectangular parallelepiped. When placed
inside a packing box, the souvenir box may be rotated, but its sides must remain parallel to the sides of
the packing box. Extra space is not an issue, as it will be filled with plastic wrap.

Help ICPC determine the maximum possible volume of a souvenir box that fits inside all of the packing
boxes.

Input
The first line contains a single integer n, denoting the number of packing box types provided by the
delivery service (1 ≤ n ≤ 1000).

The i-th of the following n lines contains three integers wi, hi, and di, denoting the width, height, and
depth of the i-th packing box (1 ≤ wi, hi, di ≤ 1000).

Output
Print the largest possible volume of a souvenir box that fits inside all of the packing boxes. Remember
that the souvenir box can be rotated, as long as its sides remain parallel to the sides of the packing box.

Example
standard input standard output

3

6 5 6

2 10 10

3 8 4

48

Note
In the example, the largest souvenir box that fits in each of the packing boxes has dimensions 2× 4× 6.
It fits in the first two packing boxes without rotation, and it can be rotated to become 2× 6× 4 to fit in
the third packing box.

Page 2 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem C. Compact Encoding
Time limit: 2 seconds
Memory limit: 1024 megabytes

Binary formats often use compact representations for integers. Consider writing a 32-bit unsigned integer
to a file: you must always reserve 4 bytes to represent it (remember, 8 bits make one byte). However, in
many real-life applications, integer values tend to be small. Writing these small values using a fixed 4-byte
representation results in files that are mostly filled with zero bytes.

To make the representation more compact, we introduce the following encoding scheme. Each value is
represented as a sequence of bytes b1, b2, . . . , bk, where each bi is an integer between 0 and 255, inclusive.
The most significant bit of each byte serves as a continuation flag, and the lower 7 bits carry the actual
data. If the continuation flag is 1, more bytes follow; for the last byte, it is 0. The representation is
big-endian, meaning that b1 contains the most significant bits of the encoded value.

For example, here’s how to find the compact representation of n = 112025. First, we find its binary
representation:

112025 = 110110101100110012

Next, we split it into 7-bit chunks, padding with zeros on the left if necessary:

0000110 / 1101011 / 0011001

The first two chunks have a following chunk, so the corresponding bytes have their most significant bit
set to 1. The last chunk has no following chunk, so its most significant bit is 0. This gives us:

b1 = 100001102 = 134
b2 = 111010112 = 235
b3 = 000110012 = 25

You are given an integer n, and your task is to find its compact representation.

Input
The only line contains a single integer n (0 ≤ n ≤ 231 − 1).

Output
Print a sequence of integers between 0 and 255, inclusive, representing the compact encoding of n. The
encoding must not contain leading bytes with zero data bits: that is, it may not start with 128.

Examples
standard input standard output

112025 134 235 25

128 129 0

0 0

42 42

16384 129 128 0

2147483647 135 255 255 255 127

Page 3 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem D. Defense Distance
Time limit: 2 seconds
Memory limit: 1024 megabytes

The NWRRC security server has a final access check for teams that try to submit their solutions to the
secret hidden problem.

To pass the check, the team must enter three passwords s, t, and u that the system will accept. Each
password must be a non-empty string consisting of at most 5000 lowercase English letters.

The rules of the server are public:

• The distance between s and t should be equal to a.
• The distance between s and u should be equal to b.
• The distance between t and u should be equal to c.

The distance between two strings s1 and s2 is the minimum number of single-character operations (insert
one character, remove one character, or replace one character) needed to convert string s1 into string s2.
This metric is also known as the Levenshtein distance.

The server gives access to the hidden problem if and only if all described conditions are satisfied. Your
goal is to construct a triple of passwords to unlock the hidden problem or determine that it is impossible.

Input
The only line contains three integers a, b, and c, denoting the required distances between each pair of
passwords (0 ≤ a, b, c ≤ 1000).

Output
If there are no three passwords with the required properties, print “No” in the only line.

Otherwise, print “Yes” in the first line. Then print passwords s, t, and u in the following three lines. Each
password should consist of at least 1 and at most 5000 lowercase English letters.

If there are multiple triples of passwords that meet the requirements, print any of them.

Examples
standard input standard output

4 3 5 Yes

icpc

nwrrc

itmo

2 2 2 Yes

aa

bb

cc

0 0 1 No

Note
In the first test case:

• The distance between “icpc” and “nwrrc” is 4: “icpc” → “irpc” → “irrc” → “nrrc” → “nwrrc”.
• The distance between “icpc” and “itmo” is 3: “icpc” → “itpc” → “itpo” → “itmo”.
• The distance between “nwrrc” and “itmo” is 5: “nwrrc” → “wrrc” → “wrro” → “irro” → “itro”
→ “itmo”.

In the second test case, the distance between each pair of passwords is 2.

In the third test case, it can be shown that there are no three passwords with the required properties.

Page 4 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem E. Eight-Connected Figures
Time limit: 4 seconds
Memory limit: 1024 megabytes

This is an interactive problem.

An infinite square grid is hidden from you. Every cell is identified by a pair of integers (x, y) and is
randomly colored either black or white with 50% probability for each color, independently of other cells.

Two cells are considered adjacent if they share an edge or a corner. Thus, every cell (x, y) has 8 adjacent
cells: (x−1, y−1), (x−1, y), (x−1, y+1), (x, y−1), (x, y+1), (x+1, y−1), (x+1, y), and (x+1, y+1).

A set of cells S is called 8-connected if for any two cells in S, there exists a path between them using only
cells from S, where consecutive cells in the path are adjacent.

In one query, you can learn the color of any cell on the grid. Your task is to find an 8-connected set of n
cells such that all cells in the set have the same color.

You need to solve t test cases. In each test case, the grid is colored randomly and independently of the
other test cases.

You are allowed to make at most 30 000 queries in total over all test cases.

Input
The first line contains two integers t and n, denoting the number of test cases and the required size of the
8-connected set (1 ≤ t ≤ 50; 2 ≤ n ≤ 300).

Interaction Protocol
In each test case, you can make zero or more queries to learn the colors of grid cells.

To make a query, print a line:

• ? x y

where (x, y) are the coordinates of the requested cell (−109 ≤ x, y ≤ 109). After that, read a line containing
one letter: ‘B’ if the cell (x, y) is black, or ‘W’ if the cell (x, y) is white.

Once you are ready to present an 8-connected set of n cells of the same color, print a line:

• ! c x1 y1 x2 y2 . . . xn yn

where c is a letter denoting the color of the cells in the set (‘B’ for black and ‘W’ for white), and
(x1, y1), (x2, y2), . . . , (xn, yn) are the n distinct cells in the set (−109 ≤ xi, yi ≤ 109). The interactor
does not print anything in response to this line.

After printing the set, proceed to the next test case, or terminate the program if this was the last one.

You are allowed to make at most 30 000 queries in total over all test cases (not including the lines that
print the sets). If you exceed this limit, the interactor will print 0 instead of its usual response, and your
program should terminate immediately to guarantee the “Wrong Answer” verdict.

The interactor is not adaptive: all random grids used in the tests have been pre-generated and remain the
same across all submissions.

Page 5 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Example
standard input standard output

2 5

W

W

B

B

B

W

B

B

B

B

W

W

B

B

W

W

W

B

? 1 1

? 1 2

? 1 3

? 2 1

? 2 2

? 2 3

? 3 1

? 3 2

? 3 3

! B 2 2 1 3 3 3 2 1 3 2

? 1 1

? 1 2

? 1 3

? 2 1

? 2 2

? 2 3

? 3 1

? 3 2

? 3 3

! W 1 2 3 2 1 3 2 3 3 1

Note
In the example, the queries and the responses are separated by empty lines for clarity. In the actual
interaction between your program and the interactor, there will be no empty lines.

Your solution will be evaluated on at most 60 test files.

Page 6 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem F. Faulty Fraction
Time limit: 2 seconds
Memory limit: 1024 megabytes

Felix is studying basic arithmetic at school. Today he learned division. As a final task, he calculated the
result of the division of a positive integer a by a positive integer b. The result was a positive integer c,
since a was divisible by b. Felix wrote a÷ b = c in his notebook and went outside to play football.

His little sister Fiona had been watching his studies with great interest. When Felix left, she decided to
play a little trick on him: she took his notebook and erased the ‘÷’ sign from the equation. As a result,
the left-hand side of the equation became a single string of digits s.

Once Felix came back, he saw s = c in his notebook. Unfortunately, he forgot the original values of a
and b. Now he needs to split s back into two parts using the ‘÷’ sign to restore a correct division equation.

Help Felix find positive integers a and b such that s is the concatenation of the decimal representations
of a and b, and a÷ b = c.

Input
The only line contains a string of digits s and an integer c. Both s and c consist of at least 1 and at most
105 digits and do not have leading zeros.

It is guaranteed that s is a concatenation of two positive integers a and b written without leading zeros
such that a÷ b = c.

Output
Print two positive integers a and b without leading zeros such that s is the concatenation of a and b, and
a÷ b = c. If there are multiple answers, print any of them.

Examples
standard input standard output

42 2 4 2

2025225 9 2025 225

239239239 1001 239239 239

Page 7 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem G. Games of Chess
Time limit: 2 seconds
Memory limit: 1024 megabytes

There are n friends and n houses in Chess City, both numbered from 1 to n, where friend i lives in house i.
The houses are connected by m bidirectional roads, forming a connected network.

Chess City also has n virtual chess clubs, numbered from 1 to n. Each friend must choose exactly one
club to join. These choices do not need to be distinct, so some clubs might not have any members.

When friend i hosts a chess party, it is attended by every friend who belongs to the same club as friend i
and lives in a house directly connected to house i by a road. The party is considered successful if the total
number of attendees, including friend i, is even; in this case, they can all play chess simultaneously.

Choose a club for each friend so that every friend’s party is successful, or report that it is impossible.

Input
Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 104).
The description of the test cases follows.

The first line of each test case contains two integers n and m, denoting the number of houses and the
number of roads (2 ≤ n ≤ 105; n− 1 ≤ m ≤ 2 · 105).
Each of the following m lines contains two integers u and v, describing a bidirectional road between houses
u and v (1 ≤ u, v ≤ n; u ̸= v). No two houses are connected by more than one road. It is possible to get
from any house to any other one using the roads.

It is guaranteed that the sum of n over all test cases does not exceed 105, and the sum of m over all test
cases does not exceed 2 · 105.

Output
For each test case, print a single integer −1 if it is impossible to assign a chess club to each friend so that
every friend’s party is successful.

Otherwise, print n integers c1, c2, . . . , cn, where ci is the number of the chess club that friend i should join
(1 ≤ ci ≤ n). If there are multiple answers, print any of them.

Example
standard input standard output

3

2 1

1 2

3 3

1 2

2 3

3 1

8 10

1 2

1 4

1 7

5 2

5 4

5 7

5 3

2 6

2 8

6 8

1 1

-1

3 3 6 6 6 2 6 2

Page 8 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem H. High Score
Time limit: 2 seconds
Memory limit: 1024 megabytes

Hermione loves to play the following computer game, in which the player controls an unordered multiset
of integers. Initially, the multiset is empty and the player’s score is 0. At any moment in the game, the
multiset contains at most k integers (not necessarily distinct). In one turn, the player can choose one of
the following moves:

• Insert. Choose an integer 2 or 4 and insert it into the multiset. This move does not change the
score, and it is only allowed if the size of the multiset before the move is strictly less than k.

• Merge. Choose an integer x such that the multiset contains at least two copies of x. Remove two
copies of x from the multiset, and insert one copy of 2x into the multiset. This move adds the
value 2x to the player’s score.

The player can stop the game after any turn, at which point the player’s score becomes final.

Hermione has been on vacation for the whole summer, and she hasn’t played the game in a while. Today,
she opened the game on her laptop and saw the leaderboard with the highest scores she’s ever had:
h1, h2, . . . , hn in some order. Now she is curious how she managed to achieve those scores.

For each hi, find any multiset of integers that Hermione could have at the end of the game if her final
score was hi, or determine that it is impossible to achieve such a score.

Input
The first line contains two integers n and k, denoting the number of scores on the leaderboard and the
maximum size of the multiset (1 ≤ n ≤ 104; 2 ≤ k ≤ 16).

Each of the next n lines contains a single integer hi, denoting a score on the leaderboard (1 ≤ hi ≤ 109).

Output
For each score hi, print the final size of the multiset s, followed by s integers describing the contents of
the multiset in any order (0 ≤ s ≤ k). It must be possible to achieve the score hi with this multiset at
the end of the game. If there are multiple answers, print any of them.

If it is impossible to have the score hi at the end of the game, print a single integer −1 instead.

Examples
standard input standard output

1 2

12

1 8

4 5

4

12

10

20

2 4 2

5 8 4 2 2 4

-1

3 2 4 8

1 16

19956

1 2048

Note
A possible sequence of moves for the first test is shown below:

{} insert 2−−−−−→ {2} insert 2−−−−−→ {2, 2} merge, x = 2−−−−−−−−→
score += 4

{4} insert 4−−−−−→ {4, 4} merge, x = 4−−−−−−−−→
score += 8

{8}

Page 9 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem I. Infection Investigation
Time limit: 3 seconds
Memory limit: 1024 megabytes

Isaac is a biologist who specializes in diagnosing viral diseases. The virus modifies the host genome
(a sequence of genes) by altering it to suit its own needs. Isaac is writing a paper investigating viral
infection in genomes. He has some samples and asks you to help analyze them.

For simplicity, we will assume that the viral genome consists of genes 1, 2, . . . , n in this order. The host
genome is a permutation of genes 1, 2, . . . n: it consists of genes a1, a2, . . . , an in this order.

Consider a genomic segment [l; r] consisting of genes al, al+1, . . . , ar. The infection level of this segment is
measured as the length of the longest subsequence of genes shared with the viral genome. Formally, the
infection level is the maximum k such that there exist l ≤ i1 < i2 < · · · < ik ≤ r for which the inequalities
ai1 < ai2 < · · · < aik hold.

To analyze the genome, Isaac needs to estimate the infection levels of q genomic segments. To secure the
funding, Isaac only needs approximate results: an error factor of up to 1.5 is allowed.

Input
Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 104).
The description of the test cases follows.

The first line of each test case contains two integers n and q, denoting the host genome length and the
number of genomic segments Isaac is interested in (1 ≤ n, q ≤ 2 · 105).
The second line contains n distinct integers a1, a2, . . . , an, describing the host genome (1 ≤ ai ≤ n).

Each of the following q lines contains two integers l and r, denoting the boundaries of a genomic segment
for which the infection level should be estimated (1 ≤ l ≤ r ≤ n).

It is guaranteed that the sum of n over all test cases does not exceed 2 · 105, and the sum of q over all
test cases does not exceed 2 · 105.

Output
For each test case, print q positive integers, denoting the infection levels of the corresponding genomic
segments.

For each genomic segment, let your answer be x and let the true answer be y. Your answer will be
considered correct if it differs from the true answer by a factor of at most 1.5, that is, if max

(
x
y ,

y
x

)
≤ 1.5.

Example
standard input standard output

2

10 4

3 5 8 4 6 7 1 10 2 9

1 7

7 10

1 10

3 4

8 2

1 2 3 4 5 6 7 8

1 8

1 8

4

3

5

1

6

12

Page 10 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem J. Judging Problem
Time limit: 2 seconds
Memory limit: 1024 megabytes

The judges of NWRRC came up with n problems on a similar topic and decided to use them for n
consecutive years, one problem per year. The only question was: in what order should they be used?

Each problem’s name consists of two words. Let’s call two names similar if either their first words are the
same or their second words are the same. For example, eight shaped and eight connected are similar,
while hello world and world hello are not.

The judges decided to implement the following rule: in the first year, they chose a problem arbitrarily.
In every subsequent year, if there was a problem with a name similar to the previous year’s problem that
was still unused, they chose one of such problems; otherwise, they chose any unused problem.

You are given the names of the problems in chronological order of their use. Determine whether the judges
correctly followed the rule above, or if they made a mistake.

Input
Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 104).
The description of the test cases follows.

The first line of each test case contains a single integer n, denoting the number of problems (2 ≤ n ≤ 105).

The i-th of the following n lines contains the name of the i-th problem in chronological order: two words
consisting of at least 1 and at most 10 lowercase English letters each. All problem names are distinct.

It is guaranteed that the sum of n over all test cases does not exceed 105.

Output
For each test case, print “Yes” if the judges followed the rule correctly, and “No” otherwise.

Example
standard input standard output

3

4

k shaped

h shaped

eight shaped

eight connected

3

k shaped

eight connected

eight shaped

4

judging problem

judging logic

binary problem

logic problem

Yes

No

Yes

Note
In the first test case, each subsequent problem name is similar to the previous one.

In the second test case, the judges should have chosen “eight shaped” for the second year.

In the third test case, neither “binary problem” nor “logic problem” is similar to “judging logic”; the
judges could have chosen either of those problems for the third year.

Page 11 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem K. Keys and Grates
Time limit: 2 seconds
Memory limit: 1024 megabytes

Katniss is in a very long straight tunnel and wants to get out of it. She can move along the tunnel in both
directions. There is exactly one hatch in the tunnel, and if she reaches it, she can exit.

Unfortunately, it’s not that simple. There are grates blocking the entire width of the tunnel at n locations.
The grates are locked, and Katniss cannot pass through a grate until she unlocks it. Fortunately, there
are n keys located at n points along the tunnel. Each grate can be unlocked by exactly one of these n
keys. Once a grate is unlocked, Katniss can freely and repeatedly pass through it. She can pick up and
hold an unlimited number of keys.

Katniss knows her own location, as well as the locations of all n keys, all n grates, and the hatch. She
also knows which key unlocks which grate. Determine the minimum distance she must travel to escape.

Input
Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 5 · 104).
The description of the test cases follows.

The first line of each test case contains three integers n, s, and h, denoting the number of grates, the initial
coordinate of Katniss, and the coordinate of the hatch (1 ≤ n ≤ 2 · 105; −106 ≤ s, h ≤ 106).

The i-th of the following n lines contains two integers ki and gi, denoting the coordinate of the i-th key
and the coordinate of the grate that can be unlocked with this key (−106 ≤ ki, gi ≤ 106).

All 2n+ 2 integers s, h, ki, and ℓi are distinct.

It is guaranteed that the sum of n over all test cases does not exceed 2 · 105.

Output
For each test case, print the minimum possible length of Katniss’ escape route. If it is impossible to escape,
print −1 instead.

Example
standard input standard output

3

5 5 13

3 7

8 14

-1 11

9 1

2 10

4 40 0

20 80

50 30

70 60

90 10

1 -1 6

11 8

32

-1

7

Note
In the first test case, one of the shortest escape routes goes as follows: 5 (initial) → 3 (pick up key 1) →
7 (unlock grate 1) → 9 (pick up key 4) → 1 (unlock grate 4) → −1 (pick up key 3) → 2 (pick up key 5)
→ 10 (unlock grate 5) → 11 (unlock grate 3) → 13 (hatch).

Page 12 of 13



ICPC 2025–2026 Northwestern Russia Regional Contest
St Petersburg, November 15, 2025

Problem L. Lucky Number Theory
Time limit: 4 seconds
Memory limit: 1024 megabytes

Lucy is a frequent arcade visitor. All machines at the arcade give out tickets to exchange for prizes! Lucy’s
favorite machine works as follows.

The machine only has two buttons: “Roll” and “Withdraw”. Whenever Lucy presses “Roll”, the machine
increases the counter on the screen by a randomly generated real number between 0 and d. At any
moment, she can press “Withdraw“ to get the number of tickets equal to the counter, which gets reset. In
case it’s not an integer, the machine generously rounds the counter up before handing out the tickets.

More formally, the machine stores a real number S, initially equal to 0. On each “Roll” press, the machine
generates ∆ — a random real number picked uniformly from the interval (0, d). Then, S increases by
the value of ∆. When the “Withdraw” button is pressed, the machine rounds S up, giving the player ⌈S⌉
tickets, and then resets S back to zero. Lucy can see the value of S on the screen at any moment with as
much precision as she wants, and she can use it to decide whether to roll or withdraw.

Lucy has enough arcade tokens to press “Roll” n times, and “Withdraw” k times. Find a strategy that
maximizes the expected number of tickets Lucy can get, and print this maximum expected number.

Input
Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 2000).
The description of the test cases follows.

The only line of each test case contains three integers n, k, and d, denoting the number of rolls, the
number of withdrawals, and the upper bound on roll values (1 ≤ k ≤ n ≤ 2000; 1 ≤ d ≤ 2000).

Output
For each test case, print the maximum expected number of tickets Lucy can get, as a floating point
number. Your answer will be considered correct if its absolute or relative error doesn’t exceed 10−6.

Example
standard input standard output

3

3 2 1

5 5 3

7 1 10

2.6250000000

10.0000000000

35.5000000000

Note
In the first test case, with n = 3 rolls, k = 2 withdrawals, and d = 1, the optimal strategy is as follows:

Lucy starts with a roll. Depending on the number S, there are two possibilities:

• The number is less than 1
2 . In this case, Lucy should withdraw, then roll two more times, and

withdraw at the end. The expected number of tickets in this case is 1 + 3
2 = 2.5 (1 ticket for the

first withdrawal, and 3
2 tickets on average after two rolls).

• The number is at least 1
2 . In this case, it’s optimal to roll again, withdraw, then roll for the last time,

and withdraw at the end. For the first withdrawal, she will get only one ticket with probability 1
4

(the probability that the sum of the first two rolls is at most 1, given that the first roll was over 1
2),

and two tickets with probability 3
4 . The expected number of tickets is 1 + 2 · 3

4 + 1 · 1
4 = 2.75.

Each case happens with probability 1
2 , so the total expected value for this strategy is 1

2(2.5+2.75) = 2.625.

In the second test case, Lucy can withdraw after every roll, each time getting 2 tickets on average.

In the third test case, Lucy can only withdraw once, and she should do it after all 7 rolls.

Page 13 of 13


