ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem A. Ancient Cipher

Input file: ancient.in
Output file: ancient.out

Ancient Roman empire had a strong government system with various departments, including a secret
service department. Important documents were sent between provinces and the capital in encrypted form
to prevent eavesdropping. The most popular ciphers in those times were so called substitution cipher and
permutation cipher.

Substitution cipher changes all occurrences of each letter to some other letter. Substitutes for all letters
must be different. For some letters substitute letter may coincide with the original letter. For example,
applying substitution cipher that changes all letters from ‘A’ to ‘Y’ to the next ones in the alphabet, and
changes ‘Z’ to ‘A’, to the message “VICTORIOUS” one gets the message “WIDUPSJPVT”.

Permutation cipher applies some permutation to the letters of the message. For example, applying the
permutation (2,1,5,4,3,7,6,10,9,8) to the message “VICTORIOUS” one gets the message “IVOTCIRSUO”.

It was quickly noticed that being applied separately, both substitution cipher and permutation cipher
were rather weak. But when being combined, they were strong enough for those times. Thus, the most
important messages were first encrypted using substitution cipher, and then the result was encrypted
using permutation cipher. Encrypting the message “VICTORIOUS” with the combination of the ciphers
described above one gets the message “JWPUDJSTVP”.

Archeologists have recently found the message engraved on a stone plate. At the first glance it seemed
completely meaningless, so it was suggested that the message was encrypted with some substitution and
permutation ciphers. They have conjectured the possible text of the original message that was encrypted,
and now they want to check their conjecture. They need a computer program to do it, so you have to
write one.

Input

Input file contains two lines. The first line contains the message engraved on the plate. Before encrypting,
all spaces and punctuation marks were removed, so the encrypted message contains only capital letters of
the English alphabet. The second line contains the original message that is conjectured to be encrypted
in the message on the first line. It also contains only capital letters of the English alphabet.

The lengths of both lines of the input file are equal and do not exceed 100.

Output

Output “YES” if the message on the first line of the input file could be the result of encrypting the message
on the second line, or “NO” in the other case.

Sample input and output

ancient.in ancient.out
JWPUDJSTVP YES
VICTORIOUS
MAMA NO
ROME
HAHA YES
HEHE
AAA YES
AAA
NEERCISTHEBEST NO
SECRETMESSAGES

Page 1 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem B. Box

Input file: box.in
Output file: box.out

Ivan works at a factory that produces heavy machinery. He has a simple job — he knocks up wooden
boxes of different sizes to pack machinery for delivery to the customers. Each box is a rectangular
parallelepiped. Ivan uses six rectangular wooden pallets to make a box. Each pallet is used for one side
of the box.

Joe delivers pallets for Ivan. Joe is not very smart and often makes mistakes — he brings Ivan pallets
that do not fit together to make a box. But Joe does not trust Ivan. It always takes a lot of time to
explain Joe that he has made a mistake.

Fortunately, Joe adores everything related to computers and sincerely believes that computers never
make mistakes. Ivan has decided to use this for his own advantage. Ivan asks you to write a program
that given sizes of six rectangular pallets tells whether it is possible to make a box out of them.

Input
Input file consists of six lines. Each line describes one pallet and contains two integer numbers w and h
(1 <w,h <10000) — width and height of the pallet in millimeters respectively.

Output
Write a single word “POSSIBLE” to the output file if it is possible to make a box using six given pallets
for its sides. Write a single word “IMPOSSIBLE” if it is not possible to do so.

Sample input and output

box.in box.out
1345 2584 POSSIBLE
2584 683
2584 1345
683 1345
683 1345
2584 683

1234 4567 IMPOSSIBLE
1234 4567
4567 4321
4322 4567
4321 1234
4321 1234

Page 2 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem C. Chandelier

Input file: chandelier.in
Output file: chandelier.out

Lamps-O-Matic company assembles very large chandeliers. A chandelier consists of multiple levels. On
the first level crystal pendants are attached to the rings. Assembled rings and new pendants are attached
to the rings of the next level, and so on. At the end there is a single large ring — the complete chandelier
with multiple smaller rings and pendants hanging from it.

A special-purpose robot assembles chandeliers. It has a supply of crystal pendants and empty rings, and
a stack to store elements of a chandelier during assembly. Initially the stack is empty. Robot executes a
list of commands to assemble a chandelier.

%@*@%

aaa3 aa2aaad aaaaa3aaalaaaédb

On command “a” robot takes a new crystal pendant and places it on the top of the stack. On command
“1” to “9” robot takes the corresponding number of items from the top of the stack and consecutively
attaches them to the new ring. The newly assembled ring is then placed on the top of the stack. At the
end of the program there is a single item on the stack — the complete chandelier.

Unfortunately, for some programs it turns out that the stack during their execution needs to store too
many items at some moments. Your task is to optimize the given program, so that the overall design of
the respective chandelier remains the same, but the maximal number of items on the stack during the
execution is minimal. A pendant or any complex multi-level assembled ring count as a single item of the
stack.

The design of a chandelier is considered to be the same if each ring contains the same items in the same
order. Since rings are circular it does not matter what item is on the top of the stack when the robot
receives a command to assemble a new ring, but the relative order of the items on the stack is important.
For example, if the robot receives command “4” when items (i1, i2,13,74) are on the top of the stack in
this order (i; being the topmost), then the same ring is also assembled if these items are arranged on the
stack in the following ways: (ig,i3,%4,71), OT {(i3,14,11,12), Or (i4,11,12,13).

Input
The input file contains a single line with a valid program for the robot. The program consists of at most
10000 characters.

Output

On the first line of the output file write the minimal required stack capacity (number of items it can
hold) to assemble the chandelier. On the second line write some program for the assembly robot that
uses stack of this capacity and results in the same chandelier.

Sample input and output

chandelier.in chandelier.out

aaaaal3aaalaaadb 6
aaa3aaa2aaadaab

Page 3 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem D. Document Indexing

Input file: document.in
Output file: document.out

Andy is fond of old computers. He loves everything about them and he uses emulators of old operating
systems on his modern computer. Andy also likes writing programs for them. Recently he has decided
to write a text editor for his favorite text-mode operating system.

The most difficult task he has got stuck with is document indexing. An indexr of the document is the
lexicographically ordered list of all words occurring in the document with the numbers of pages they
occur at. Andy feels that he is not able to write the component of the editor that performs indexing, so
he asks you to help.

A document is a sequence of paragraphs. Each paragraph consists of one or more lines. Paragraphs are
separated from each other with exactly one blank line.

First, the document is paginated — divided into pages. Each page consists of up to n lines. Lines are
placed on the page one after another, until n lines are placed. The following correction rules are then
applied:

e If the last line on a page is the last line of the paragraph, then the following empty line is skipped,
i.e. it is not placed on any page. Therefore, the page never starts with a blank line.

e If the last line on a page is the first line of a paragraph that contains more than one line (so called
orphan line), then it is moved to the next page.

e If the last line on a page is the next-to-last line of a paragraph that contains more than three lines,
then this line is moved to the next page (otherwise, the last line of the paragraph would be alone
on the page — so called widow line).

e If the last line on a page is the next-to-last line of a paragraph that contains exactly two or three
lines, then the whole paragraph is moved to the next page (so we have neither orphan, nor widow
lines).

After applying the correction rules the next page is formed, and so on until the whole document is
paginated.

A word is a continuous sequence of letters of the English alphabet. Case is not important.

The index of the document contains each word from the document and the list of the pages it occurs
at. The numbers of pages a word occurs at must be listed in the ascending order. Numbers must be
separated by commas. If a word occurs on three or more consecutive pages, only the first and the last
page numbers of this range must be listed, separated by a dash, for example “3-5,7-10,12,13,15".

Input
The first line of the input file contains n (4 < n < 100). The rest of the input file contains the document
to be indexed. The size of the input file does not exceed 20000 bytes.

The line is considered blank if it is completely empty. No line contains leading or trailing spaces. The
document does not contain two consecutive blank lines. The first line of the document is not blank. The
length of each line of the document does not exceed 200 characters.

Output

Print all words that occur in the given document. Words must be printed in the lexicographical order,
one word on a line. After each word print one space followed by the list of pages it occurs at, formatted
as described in problem statement. Use capital letters in output.

Page 4 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Sample input and output

document.in

document.out

6

From thousands of teams competing in regional
contests held from September to December 2004
world-wide, seventy-five teams will advance to
the World Finals in Shanghai, April 3-7, 2005.

Awards, prizes, scholarships, and bragging rights
will be at stake for some of the world’s finest
university students of the computing science.

Join us for the challenge, camaraderie,
and the fun! Become the best of the best
of the best in ACM ICPC!

ACM ICPC is the best contest!

ACM 3
ADVANCE 1
AND 2,3
APRIL 1

AT 2

AWARDS 2

BE 2

BECOME 3
BEST 3
BRAGGING 2
CAMARADERIE 3
CHALLENGE 3
COMPETING 1
COMPUTING 2
CONTEST 3
CONTESTS 1
DECEMBER 1
FINALS 1
FINEST 2
FIVE 1

FOR 2,3
FROM 1

FUN 3

HELD 1

ICPC 3

IN 1,3

IS 3

JOIN 3

OF 1-3
PRIZES 2
REGIONAL 1
RIGHTS 2

S 2
SCHOLARSHIPS 2
SCIENCE 2
SEPTEMBER 1
SEVENTY 1
SHANGHAT 1
SOME 2
STAKE 2
STUDENTS 2
TEAMS 1

THE 1-3
THOUSANDS 1
TO 1
UNIVERSITY 2
Us 3

WIDE 1

WILL 1,2
WORLD 1,2

Page 5 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem E. Easy Trading

Input file: easy.in
Output file: easy.out

Frank is a professional stock trader for Advanced Commercial Markets Limited (ACM Ltd). He likes
“easy trading” — using a straightforward strategy to decide when to buy stock and when to sell it.

Frank has a database of historical stock prices for each day. He uses two integer numbers m and n
(1 <m < n <100) as parameters of his trading strategy. Every day he computes two numbers: P(m)
— an average stock price for the previous m days, and P(n) — an average stock price for the previous n
days. P(m) > P(n) is an indicator of the upward trend (traders call it bullish trend), and P(m) < P(n)
is an indicator of the downward trend (traders call it bearish trend). In practice the values for P(m) and
P(n) are never equal.

When a trend reverses from bearish to bullish it is a signal for Frank to buy stock. When a trend reverses
from bullish to bearish it is a signal to sell.

T T T T T T T T T T T T T T T T T >da’y
1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16 17

Frank has different values for m and n in mind and he wants to backtest them using historical prices. He
takes a set of k (n < k <10000) historical prices p; (0 < p; < 100 for 1 <14 < k). For each i (n <i < k)
he computes P;(m) and P;(n) — an arithmetic average of p;_m+1...p; and p;_n11 ... p; respectively.

Backtesting generates trading signals according to the following rules.

e If P;(m) > P;(n) there is a bullish trend for day ¢ and a “BUY ON DAY ¢” signal is generated if i = n
or there was a bearish trend on day 7 — 1.

o If P;(m) < P;(n) there is a bearish tread for day ¢ and a “SELL ON DAY ¢” signal is generated if
1 = n or there was a bullish trend on day 7 — 1.

Your task is to write a program that backtests a specified strategy for Frank — you shall print a signal
for the first tested day (day n) followed by the signals in increasing day numbers.

Input
The first line of the input file contains three integer numbers m, n, and k. It is followed by k lines with

stock prices for days 1 to k. Each stock price p; is specified with two digits after decimal point. Prices
in the input file are such that P;(m) # P;(n) for all ¢ (n <i < k).

Output

Write to the output file a list of signals — one signal on a line, as described in the problem statement.

Page 6 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Sample input and output

easy.in easy.out

3 517 BUY ON DAY 5

8.45 SELL ON DAY 12
9.10
9.40
10.15
10.40
11.08
11.52
12.12
12.51
12.15
11.90
11.25
11.73
10.77
10.80
10.01
9.14

Page 7 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem F. Find the Border

Input file: find.in
Output file: find.out

Closed polyline (with possible self-intersections) partitions a plane into a number of regions. One of the
regions is unbounded — it is an exterior of the polyline. All the bounded regions together with the
polyline itself form an interior of the polyline (shaded in the picture below). The border of the interior
(bold line in the picture) is a polyline as well. This polyline has the same interior as the original one.
Your task is to find the border of the interior of the given polyline.

To guarantee the uniqueness (up to the starting point) of the polyline representing the border we require
that the following conditions are satisfied for it:
e it has no self-intersections, although may have self-touchings;
no adjacent vertices of the border coincide;
e no adjacent edges of the border are collinear;
e when traversing the border, its interior is always to the left of its edges.

Input

The first line of the input file contains an integer number n (3 < n < 100) — the number of vertices in
the original polyline. Following n lines contain two integer numbers z; and y; on a line (0 < z;,y; < 100)
— coordinates of the vertices. All vertices are different and no vertex lies on an edge between two other
vertices. Adjacent edges of the polyline are not collinear.

Output

Write to the output file an integer number m — the number of vertices of the border. Then write m
lines with coordinates of the vertices. Coordinates must be precise up to 4 digits after the decimal point.

Sample input and output

find.in find.out
10 13
49 9.3333 4
99 10 2
12 4 12 4
10 2 10.5 6.5
95 11.5 7.5
14 10 14 5
14 5 14 10
10 9 11.5 7.5
11 4 10 9
4 4 10.5 6.5
99
49
4 4

Page 8 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem G. Gunman

Input file: gunman. in
Output file: gunman . out

Consider a 3D scene with OXYZ coordinate system. Axis OX points to the right, axis OY points up,
and axis OZ points away from you. There is a number of rectangular windows on the scene. The plane
of each window is parallel to OXY, its sides are parallel to OX and OY. All windows are situated at
different depths on the scene (different coordinates z > 0).

AN

g ———
. | VA : o |
56 7 Vel
4 S e
23 [[

< - x

100 1 2 3 45 67

A gunman with a rifle moves along OX axis (y = 0 and z = 0). He can shoot a bullet in a straight line.
His goal is to shoot a single bullet through all the windows. Just touching a window edge is enough.

Your task is to determine how to make such shot.

Input

The first line of the input file contains a single integer number n (2 < n < 100) — the number of windows
on the scene. The following n lines describe the windows. Each line contains five integer numbers x;,
Y1is T2is Y2i, 2i (0 < X14, Y1is T2i, Y2i, 2; < 1000). Here (x14,y1s, 2;) are coordinates of the bottom left
corner of the window, and (x9;,y2;, 2;) are coordinates of the top right corner of the window (z1; < xg;,
y1i < y2;). Windows are ordered by z coordinate (z; > z;—1 for 2 < i < n).

Output

Output a single word “UNSOLVABLE” if the gunman cannot reach the goal of shooting a bullet through
all the windows.

Otherwise, on the first line output a word “SOLUTION”. On the next line output x coordinate of the point
from which the gunman must fire a bullet. On the following n lines output x,y, 2z coordinates of the
points where the bullet goes through the consecutive windows. All coordinates in the output file must
be printed with six digits after decimal point.

Sample input and output

gunman.in gunman.out

3 SOLUTION

135563 -1.000000

12575 2.000000 3.000000 3.000000

52766 4.000000 5.000000 5.000000
5.000000 6.000000 6.000000

3 UNSOLVABLE

21541

35682

43864

Page 9 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem H. Heapsort

Input file: heapsort.in
Output file: heapsort.out

A well known algorithm called heapsort is a deterministic sorting algorithm taking O(nlogn) time and
O(1) additional memory. Let us describe ascending sorting of an array of different integer numbers.

The algorithm consists of two phases. In the first phase, called heapification, the array of integers to
be sorted is converted to a heap. An array a[l...n| of integers is called a heap if for all 1 < ¢ < n the
following heap conditions are satisfied:

o if 2i < n then afi] > a[2i];

o if 20 + 1 <n then ali] > a[2i + 1].

We can interpret an array as a binary tree, considering children of element a[i] to be a[2i] and a[2i + 1].
In this case the parent of a[i] is a[i div 2], where i div 2 = |i/2]. In terms of trees the property of being
a heap means that for each node its value is greater than the values of its children.

In the second phase the heap is turned into a sorted array. Because of the heap condition the greatest
element in the heapified array is a[1]. Let us exchange it with a[n], now the greatest element of the array
is at its correct position in the sorted array. This is called extract-maz.

Now let us consider the part of the array a[l...n — 1]. It may be not a heap because the heap condition
may fail for 4 = 1. If it is so (that is, either a[2] or a[3], or both are greater than a[l]) let us exchange
the greatest child of a[1] with it, restoring the heap condition for i = 1. Now it is possible that the heap
condition fails for the position that now contains the former value of a[l]. Apply the same procedure
to it, exchanging it with its greatest child. Proceeding so we convert the whole array a[l...n — 1] to a
heap. This procedure is called sifting down. After converting the part a[l...n — 1] to a heap by sifting,
we apply extract-max again, putting second greatest element of the array to a[n — 1], and so on.

For example, let us see how the heap a = (5,4,2,1,3) is converted to a sorted array. Let us make the
first extract-max. After that the array turns to (3,4,2,1,5). Heap condition fails for a[l] = 3 because
its child a[2] = 4 is greater than it. Let us sift it down, exchanging a[l] and a[2]. Now the array is
(4,3,2,1,5). The heap condition is satisfied for all elements, so sifting is over. Let us make extract-max
again. Now the array turns to (1,3,2,4,5). Again the heap condition fails for a[1]; exchanging it with its
greatest child we get the array (3,1,2,4,5) which is the correct heap. So we make extract-max and get
(2,1,3,4,5). This time the heap condition is satisfied for all elements, so we make extract-max, getting
(1,2,3,4,5). The leading part of the array is a heap, and the last extract-max finally gives (1,2,3,4,5).

It is known that heapification can be done in O(n) time. Therefore, the most time consuming operation
in heapsort algorithm is sifting, which takes O(nlogn) time.

In this problem you have to find a heapified array containing different numbers from 1 to n, such that
when converting it to a sorted array, the total number of exchanges in all sifting operations is maximal
possible. In the example above the number of exchanges is 1 + 1+ 04 0+ 0 = 2, which is not the
maximum. (5,4,3,2,1) gives the maximal number of 4 exchanges for n = 5.

Input
Input file contains n (1 < n < 50000).

Output

Output the array containing n different integer numbers from 1 to n, such that it is a heap, and when
converting it to a sorted array, the total number of exchanges in sifting operations is maximal possible.
Separate numbers by spaces.

Sample input and output

heapsort.in heapsort.out
6 653241

Page 10 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem |I. Irrelevant Elements

Input file: irrelevant.in
Output file: irrelevant.out

Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers
ranging from 0 to m — 1. He thinks that standard random number generators are not good enough, so
he has invented his own scheme that is intended to bring more randomness into the generated numbers.

First, Georgie chooses n and generates n random integer numbers ranging from 0 to m — 1. Let
the numbers generated be a1, as,...,a,. After that Georgie calculates the sums of all pairs of ad-
jacent numbers, and replaces the initial array with the array of sums, thus getting n — 1 num-
bers: a1 + ao2,a + as,...,ap—1 + a,. Then he applies the same procedure to the new array, getting
n — 2 numbers. The procedure is repeated until only one number is left. This number is then taken
modulo m. That gives the result of the generating procedure.

Georgie has proudly presented this scheme to his computer science teacher, but was pointed out that
the scheme has many drawbacks. One important drawback is the fact that the result of the procedure
sometimes does not even depend on some of the initially generated numbers. For example, if n = 3 and
m = 2, then the result does not depend on as.

Now Georgie wants to investigate this phenomenon. He calls the i-th element of the initial array irrelevant
if the result of the generating procedure does not depend on a;. He considers various n and m and wonders
which elements are irrelevant for these parameters. Help him to find it out.

Input
Input file contains n and m (1 < n < 100000, 2 < m < 10%).

Output

On the first line of the output file print the number of irrelevant elements of the initial array for given n
and m. On the second line print all such ¢ that i-th element is irrelevant. Numbers on the second line
must be printed in the ascending order and must be separated by spaces.

Sample input and output

irrelevant.in irrelevant.out
32 1

Page 11 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem J. Joke with Turtles

Input file: joke.in
Output file: joke.out

There is a famous joke-riddle for children:

Three turtles are crawling along a road. One turtle says: “There are two turtles ahead of me.”
The other turtle says: “There are two turtles behind me.” The third turtle says: “There are
two turtles ahead of me and two turtles behind me.” How could this have happened?

The answer is — the third turtle is lying!

Now in this problem you have n turtles crawling along a road. Some of them are crawling in a group,
so that they do not see members of their group neither ahead nor behind them. Each turtle makes a
statement of the form: “There are a; turtles crawling ahead of me and b; turtles crawling behind me.”
Your task is to find the minimal number of turtles that must be lying.

Let us formalize this task. Turtle ¢ has z; coordinate. Some turtles may have the same coordinate. Turtle
i tells the truth if and only if a; is the number of turtles such that x; > z; and b; is the number of turtles
such that z; < z;. Otherwise, turtle ¢ is lying.

Input
The first line of the input file contains integer number n (1 < n < 1000). It is followed by n lines
containing numbers a; and b; (0 < a;, b; < 1000) that describe statements of each turtle for ¢ from 1 to n.

Output

On the first line of the output file write an integer number m — the minimal number of turtles that must
be lying, followed by m integers — turtles that are lying. Turtles can be printed in any order. If there
are different sets of m lying turtles, then print any of them.

Sample input and output

joke.in joke.out
3 13
20
02
22
5 214
02
03
21
12
40

Page 12 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem K. Kingdom of Magic

Input file: kingdom.in
Output file: kingdom.out

Kingdom of Magic has a network of bidirectional magic portals between cities since ancient times. Each
portal magically connects a pair of cities and allows fast magical communication and travel between
them. Cities that are connected by the magic portal are called neighboring.

Prince Albert and Princess Betty are living in the neighboring cities. Since their childhood Albert and
Betty were always in touch with each other using magic communication Orbs, which work via a magic
portal between the cities.

Albert and Betty are in love with each other. Their love is so great that they cannot live a minute
without each other. They always carry the Orbs with them, so that they can talk to each other at any
time. There is something strange about their love — they have never seen each other and they even fear
to be in the same city at the same time. People say that the magic of the Orbs have affected them.

Traveling through the Kingdom is a complicated affair for Albert and Betty. They have to travel through
magic portals, which is somewhat expensive even for royal families. They can simultaneously use a pair
of the portals to move to a different pair of cities, or just one of them can use a portal, while the other
one stays where he or she is. At any moment of their travel they have to be in a neighboring cities. They
cannot simultaneously move through the same portal.

Write a program that helps Albert and Betty travel from one pair of the cities to another pair. It has to
find the cheapest travel plan — with the minimal number of times they have to move though the magic
portals. When they move through the portals simultaneously it counts as two moves.

Input

The first line of the input file contains integer numbers n, m, a1, b1, ag, bo. Here n (3 < n < 100) is
a number of cities in the Kingdom (cities are numbered from 1 to n); m (2 < m < 1000) is a number
of magic portals; aj, by (1 < a1,b; < n, a; # by) are the neighboring cities where Albert and Betty
correspondingly start their travel from; ag, bo (1 < ag,be < n, ag # be) are the neighboring cities where
Albert and Betty correspondingly want to get to (a1 # ag or by # be).

Following m lines describe the portals. Each line contains two numbers p;; and p;o (1 < pi1, pi2 < n,
pi1 # Di2) — cities that are connected by the portal. There is at most one portal connecting two cities.

Output

On the first line of the output file write two numbers ¢ and k. Here ¢ is the minimal number of moves in
the travel plan; k is the number of neighboring city pairs that Albert and Betty visit during their travel
including a;, b; at the start and ao, bs at the end.

Then write k lines with two integer numbers a, and b, on each line — consecutive different pairs of
neighboring cities that Albert and Betty visit during their travel. If there are multiple travel plans with
the same number of moves, then write any of them. It is guaranteed that solution exists.

Sample input and output

kingdom.in kingdom.out

1221

NN~ W
= W N W

WL P> WO

=D W N -

Page 13 of 14

ACM ICPC 2004-2005, Northeastern European Regional Contest
St Petersburg — Barnaul — Yerevan — Tashkent, December 1, 2004

Problem L. Lattice Animals

Input file: lattice.in
Output file: lattice.out

Lattice animal is a set of connected sites on a lattice. Lattice animals on a square lattice are especially
popular subject of study and are also known as polyominoes. Polyomino is usually represented as a set
of sidewise connected squares. Polyomino with n squares is called n-polyomino.

In this problem you are to find a number of distinct free n-polyominoes that fit into rectangle w x h. Free
polyominoes can be rotated and flipped over, so that their rotations and mirror images are considered to
be the same.

For example, there are 5 different pentominoes (5-polyominoes) that fit into 2 x 4 rectangle and 3 different
octominoes (8-polyominoes) that fit into 3 x 3 rectangle.

Input
The input file consists of a single line with 3 integer numbers n, w, and h (1 <n <10, 1 <w,h < n).

Output
Write to the output file a single integer number — the number of distinct free n-polyominoes that fit
into rectangle w x h.

Sample input and output

lattice.in lattice.out
514 0
524 5
534 11
555 12
833 3

Page 14 of 14

