
Russia Open 2021 High School Team Programming Contest, Internet Selection Round
St Petersburg, Russia, November 14, 2021

Problem A. Friendly Rooks
Author: Mikhail Anoprenko, developer: Grigory Shovkoplias

Note that the largest number of rooks that can be placed on the n × m chess board is min(n,m).
Accordingly, if min(n,m) < k, then there is no answer.

Otherwise, we can place all the rooks on the same diagonal. For example, along the main diagonal. Finally
you need to accurately print the answer.

Problem B. Guess the Array
Author: Daniil Oreshnikov, developers: Daniil Oreshnikov, Grigoriy Khlytin

The first query we make is “1 n”. The answer to that query will be the sum of the entire array s1,n = S
with some blocked segment.

The goal of all the following queries will be to determine the sums of elements on each prefix of the array.
To do this we will maintain the following invariant: at each moment of time for each yet unknown prefix
[1, i] at least one of the segments [1, i] and [i+ 1, n] is not blocked.

To achieve this, when the interactor gives us a new blocked segment [l, r] we consider three cases:

• If l = 1 then the next query will be “r + 1, n”. We get the sum on that suffix sr+1,n and can
calculate the sum on the blocked segment [1, r] as S−sr+1,n where S is the sum on the whole array;

• If r = n then the next query will be “1, l − 1” which will give us the sum on the prefix [1, l − 1];

• If any other segment is blocked we will simply query the sum on the segment [1, i] for any yet unused
i. To choose such i we can maintain a queue of all numbers between 1 and n− 1 and a set of such i
for which we already know this sum.

With this at any given time, for all i (possibly except one) for which the sum of s1,i is not yet known,
both segments [1, i] and [i+ 1, n] are not blocked. For the single i with one of the said segments blocked,
the next query will be asking for a sum on the opposite segment, so the invariant described above holds.

Once we know the sums on all prefixes of the array in n actions, the i-th element can be calculated as
s1,i − s1,i−1. All elements of the array can be calculated in such a way, and printed out after “!”.

Problem C. Moving Cells
Author: Daniil Oreshnikov, developer: Grigoriy Khlytin

Let’s use dynamic programming to solve this problem.

We will calculate a two-dimensional array dpi,j — the minimum number of actions to take with the first
i columns to make beautiful part of the picture on these columns, and so that the consecutive segment of
black cells in the i-th column starts in the j-th row.

The recalculation will be by the formula:

dpi,j = |si − j|+
j+ti−si
min

k=j+si−1−ti−1

dpi−1,k

where si and ti — numbers of the starting and ending positions of the consecutive segment of black cells
in the i-th column of the picture.

In a naive implementation of this formula, we can go through all appropriate k for each j and compute
the minimum among dpi−1,k with complexity O(n), then we get the asymptotic O(m · n2).

Page 1 of 6

Russia Open 2021 High School Team Programming Contest, Internet Selection Round
St Petersburg, Russia, November 14, 2021

However, when j changes from j to j+1, among the elements of interest to us dpi−1,k, no more than two
elements can change, since the appropriate segment of k has shifted by one. So, we can keep the minimum
in the set, for example with std::set in C++, then the asymptotics of such solution will be O(m ·n · log n),
or with the data structure queue with minimum, then the asymptotic will be O(m · n).

Problem D. Army of Clones
Author: Daniil Oreshnikov, developer: Saveliy Grigoriev

Let di — the maximum number of clones that can reach the room i. Define a weight of the edge u → v
in the following way: if du > av, then the edge u→ v has a weight 0, otherwise 1. Note that the original
undirected edge u− v trasforms into two directed edges u→ v and v → u.

The length of the shortest path from the room 1 to the room n in the given graph equals the minimum
number of times when the army of clones loses the half of the group, that is when the army moves along
this path, the number of survivor clones is the maximum.

Let’s use the algorithm 0-1 bfs. However we can determine the weight of an edge only if we calculate
the shortest path to the outgoing end of the edge. 0-1 bfs considers only such edges, so our algorithm
will work correctly.

The total complexity — O(n).

Problem E. Haiku
Author: Artem Vasiliev, developer: Arsenii Kirillov

Let’s check for each word whether there is a haiku starting with that word. To do that let’s iterate over
the words starting with this one, and count the number of phonetic units we see until we have seen at
least 5 units. If we have seen strictly more that 5 units, there is no haiku here. Otherwise, the first haiku
line is fine, and we use the same procedure to find the second line with exactly 7 units, and the last line
with exactly 5 units. Since each word has at least one phonetic unit in it, for each starting position we
will iterate over at most 17 words.

Problem F. Race
Author: Daniil Oreshnikov, developer: Mikhail Anoprenko

It is clear from the problem statement that at the moment of time t participant with number i will be
located at the point (si + t · vi, i).
Consider a moment of time when maximum number of sportsmen are on the same line. Let’s fix one of
participants in that line at that moment, denote its number by i. We will consider all possible values of
i from 1 to n. From now on, we will only take into consideration lines passing through the point where
i-th participant is located at particular moment of time.

For convenience when considering i-th participant we will locate coordinate center of the plane at the
point where i-th participant is located (coordinate center will be moving together with this sportsman).
Note that according to new coordinates at the moment of time t participant number j will be at the point
(sj−si+t ·(vj−vi), j−i). Let’s introduce a couple of new variables for convenience: j′ = j−i, s′j = sj−si,
v′j = vj − vi. Thus at the moment of time t participant number j will be at the point (s′j + t · v′j , j′). Now
we are only interested in lines passing through the point (0, 0).

Consider a moment of time t when participants with numbers j and k are located on the same line passing
through (0, 0). This condition is equivalent to the fact that cross product of vectors from (0, 0) to positions
of these participants equals to zero. Lets write down this condition using the formula for cross product:
(s′j+tv′j)k

′−(s′k+tv′k)j
′ = 0. Slight transformation of these equation: s′jk

′−s′kj′ = t(v′kj
′−v′jk′). Not that

if v′kj
′−v′jk

′ 6= 0 then there is exactly one value of t satisfying the condition. In case when v′kj
′−v′jk

′ = 0,

Page 2 of 6

Russia Open 2021 High School Team Programming Contest, Internet Selection Round
St Petersburg, Russia, November 14, 2021

let’s take a look at the value of s′jk
′ − s′kj

′. If it is also equal to 0 than condition is satisfied for any value
of t, otherwise it is never satisfied. Let’s iterate through all possible pairs of (j, k) 6= i and for each pair
find a set of moments of time when the condition for this pair is satisfied.

For each value of j let’s count the number of values of k when the condition is satisfied for any moment
of time, and for each value of k if for pair (j, k) condition is satisfied for exactly one value of t, let’s save
this value. Now let’s count the maximum number of same values of t among saved for particular value of
j, add the number of participants who satisfy the condition always, and we will obtain the candidate for
the answer. To get the real answer, we have to choose the maximum candidate for all values of i and j.

Time complexity of this solution if O(n3 log n) when using a sort to find same values of t. When using
a hash table time complexity may be reduced to O(n3). It’s also worth noting that in order to avoid
problems with real numbers precision solutions of this task should use rational fractions to store non-
integer numbers.

Problem G. Maximaze XOR sum
Author: Daniil Oreshnikov, developer: Arsenii Kirillov

Let’s note that when we swap the elements Ai and Bi, the values X(A) and X(B) are replaced by the
new values X(A)⊕Ai ⊕Bi and X(B)⊕Ai ⊕Bi. Let’s denote the value Ai ⊕Bi as Ci.

If a certain bit in some position in X(A) and X(B) is different, then it will stay different after any
sequence of operations, an will be counted exactly once in the total sum. Otherwise — if this bit is equal
in X(A) and X(B), it will always stay equal.

Therefore, we need to select some values Ci in such a way that in the positions where X(A) and X(B)
both have zeroes, the xor-sum of selected Ci would have a one, and vice versa: where X(A) and X(B)
both have ones, the xor-sum of selected Ci would have a zero. If it is impossible to satisfy all such desired
conditions, then we should satisfy the ones that correspond to the higher (leftmost) bits first, because the
corresponding power of two are higher that the sum of all the lower powers of two, thus the impact of the
higher bit is more important.

In order to do that, consider Ci as binary rows, and run Gaussian elimination algorithm. It will show
which bit positions are possible to satisfy, and how to do that from higher ones to lower ones. Since the
input numbers are at most 1018, the binary representations are no more than 60 bits, so there will be no
more than 60 iterations of Gaussian elimination.

Problem H. Octopus Game
Easy to see that it is optimal to alternate the types of operations, because two consecutive operations of
the same type can be easily combined.

Let’s use Euclidean algorithm to find GCD of a and b. After each move we would like to receive a new
number that correspond to the next step of Euclidean algorithm. Since in the end one of the numbers
becomes zero in Euclidean algorithm, we would find the desired sequence ki.

However, the problem is the length of such sequence. It it well known that the worst cast for Euclidean
algorithm is the pair of two consecutive Fibonacci numbers: the algorithm will always move to the previous
consecutive pair. So in the given constrains our approach will lead to the solution in 85 steps.

Let’s use the “Least Absolute Remainder” technique: let us allow the existence of negative remainders in
the formulation of Euclidean algorithm, so now on each step there are two possible remainders to choose
from (a%b and a%b − b), and the technique proposes to always select the one with the smaller absolute
value. Note that such action is correct in terms of the game with cards: we simply can take k+ 1 instead
of k that we would use in the usual formulation of Euclidean algorithm.

It can be shown that the number of steps doesn’t exceed log1+
√
2max(a, b).

Page 3 of 6

Russia Open 2021 High School Team Programming Contest, Internet Selection Round
St Petersburg, Russia, November 14, 2021

Problem I. Third Group Exam
Author and developer: Daniil Oreshnikov

Let’s see what happens if Ilya chooses to be graded in all blocks by answering theoretical questions. If

there were no limit on the number of blocks with a practical problem solved then his score would be
n∑

i=1
xi.

Note that in some blocks there are xi > yi and in some blocks xi is less than yi. When theory is replaced
by practice, in blocks of the first type the total grade decreases, and in blocks of the second type increases.
For blocks in which xi = yi, the total score is not affected by whether the theory or practice was chosen.

Let’s return to the situation where Ilya chooses to pass all blocks by answering theory questions. He needs
to choose practice instead of theory in some (at least b, but no more than n − a) blocks in a way that
maximizes his score. When the theory is replaced with practice in the i-th block, the sum changes by
yi−xi. If we denote by t the number of blocks with yi > xi, then the correct solution is to choose practice
in max(b,min(n− a, t)) blocks with maximal values of yi − xi.

Indeed, if t > n − a, then the maximal sum can be obtained when n − a blocks with maximal yi − xi
are graded as yi, and the remaining a blocks as xi, since there must be at least a blocks of theory. If
b ≤ t ≤ n−a the in the end Ilya can pass all the blocks in which xi is greater by theory and all the blocks

in which yi is greater by practice, achieving the maximal possible C =
n∑

i=1
max(xi, yi). And if t < b there

is no point in solving more than b practical problems instead of theory, since this will reduce the score.

So one of the optimal answers is achieved as follows: first, Ilya sorts all blocks by value yi − xi, then he
chooses to be graded by practice in max(b,min(n − a, t)) last blocks and by theory in the rest of them.
Time complexity is O(n log n) because of sorting (although it can be done in linear time with ordinal
statistics calculation).

Problem J. Computational ethnography
Author: Nikolay Vedernikov, developer: Mikhail Anoprenko

Let s be an interesting number. It is a square of some integer number r. In other words, r ≤
√
B is an

integer.

Let’s iterate over all possible values of r in the interval from 1 to b
√
Bc. For each value s = r2 let’s

check whether this number s is interesting. In order to do this we should check that the reversed decimal
notation of s is a square number. To do this, we get all the digits of s, concatenate them in the reversed
order, and check whether the square root of the received number is an integer.

The answer to the problem is the number of candidates that passed our check and that fit into the interval
from A to B. The working time of the solution is O(

√
B logB), because for each of

√
B candidate value

s we iterate over all the digits of s.

Problem K. Work or Sleep!
Problem author: Sergey Kopeliovich, developer: Grigory Shovkoplias

To solve this problem, it is necessary to derive a formula for the dependence of perfomance on sleep time.
For example, you can apply the formula to the equation of a straight line at two points to get that

f(tsleep) =

X·tsleep

T
6

0 ≤ tsleep <
T
6

100− (100−X)·(T
3
−tsleep)

T
6

T
6 ≤ tsleep ≤ T

3

100 tsleep >
T
3

Page 4 of 6

Russia Open 2021 High School Team Programming Contest, Internet Selection Round
St Petersburg, Russia, November 14, 2021

From this we obtain the formula for the dependence of the amount of work on the sleep time:

Work(tsleep) =

(T − tsleep) ·

X·tsleep
T
6

0 ≤ tsleep <
T
6

(T − tsleep) · (100−
(100−X)·(T

3
−tsleep)

T
6

) T
6 ≤ tsleep ≤ T

3

(T − tsleep) · 100 tsleep >
T
3

Then the problem is reduced to finding the maximum of this function.

1. Method 1: for lovers of mathematics. It is possible to find the points at which the derivatives
are equal to zero (the vertex of the parabola) in each part of this function, and obtain that the
maximum is attained at the point tsleep = T

6 in the first part of this function, at the point
tsleep = T

3 in the third part of this function, as expected. And the maximum is reached at the
point tsleep = T ·(2(100−X)−25)

3(100−X) in the second part of this function. Then it remains to substitute
the values and takes the maximum, or notice that the maximum will always be in the second part
(possibly at the border).

2. Method 2: for lovers of algorithms. For those participants who do not really want to deduce
many formulas, there is a wonderful algorithm ternary search that can be run on each part of the
function and take the maximum of the results.

3. Method 3: for universal lovers. You can combine ideas from the above methods. For example,
run ternary search only in the second part of the function, because you can guess the fact that the
maximum is in the second part of the function. So there is no use in deriving complex formulas.

Problem L. Permutation Transformation
Author: Nikolay Vedernikov, developer: Sergey Khargelia

If n = k, then p can be transformed to the q only in the case of p = q.

If n = k + 1, then p can be transformed to the q only if q is a cyclic shift of p. In this case, q can be
obtained by sequential application of k-transfers with parameters a = 1, b = 2. Obviously, at most n− 1
k-transfer will be required.

If n ≥ k+2 and k is odd, then p always can be transformed to the q. Let’s learn how to swap two adjacent
elements of the permutation. If k = 1, it can be done by applying one k-transfer. So let’s assume that
k ≥ 2. Note that it’s enough to learn how to swap the first two elements of the permutation and how
to move any two adjacent elements to the beginning of the permutation, because then we can move the
elements to the beginning, swap them, and then return them back (it can be done by swapping parameters
a and b for the operations of transfer to the beginning and applying this operations in reverse order).

The first two elements of the permutation can be swapped by applying
⌊
k+1
2

⌋
k-transfers with

parameters a = 1, b = 3 and then a k-transfer with parameters a = 2, b = 3. For example,
if n = 6, k = 3 and the permutation is equals to 1, 2, 3, 4, 5, 6, it will change as follows:
1, 2, 3, 4, 5, 6→ 4, 5, 1, 2, 3, 6→ 2, 3, 4, 5, 1, 6→ 2, 1, 3, 4, 5, 6.

Any two adjacent elements can be moved to the beginning as follows: let’s denote the index of the first of
them by pos. if pos+ k− 1 ≤ n, then after a k-transfer with parameters a = pos, b = 1, this two elements
will be moved to the beginning. Otherwise, let’s apply a k-transfer with parameters a = n− k+1, b = 1.
Then pos will decrease by at least n−k ≥ 2, and the considered elements will remain adjacent. Note that
this algorithm requires at most

⌊
n−1
2

⌋
+ 1 operations.

We learned how to swap two adjacent elements, so now we can easily transform p to the q: let’s find the first
element of q in the p and move it to the first position, then find the second element of q in the p and move
it to the second position, and so on. In total, the solution uses at most (n−1)+(n−2)+ . . .+1 = n(n−1)

2

Page 5 of 6

Russia Open 2021 High School Team Programming Contest, Internet Selection Round
St Petersburg, Russia, November 14, 2021

swaps of adjacent elements, so at most n(n−1)
2 ·

(⌊
k+1
2

⌋
+ 1 + 2

(⌊
n−1
2

⌋
+ 1
))
≤ n(n−1)

2 ·
(⌊

n
2

⌋
+ n+ 2

)
≤ n3

k-transfers.

Now let’s consider the case when n ≥ k+2 and k is even. Then p can be transformed to the q only if the
permutations have the same parity.

Let’s prove that if k is even, then k-transfer does not change the parity of the permutation. Note that
for a fixed pair of elements k-transfer changes their relative order only if exactly one of these elements
is in the subsegment, to which we apply k-transfer. Also, the relative order has changed either with all
elements of subsegment, or with none. Therefore, the parity of the number of inversions has changed k · c
times, for some 0 ≤ c ≤ n− k. Since k is even, k · c is also even, so k-transfer didn’t change the parity of
the number of inversions.

If p and q have the same parity, then p always can be transformed to the q. Let’s learn how to take
three adjacent elements of the permutation and shift them cyclically, leaving the rest elements on their
positions. If k = 2, it can be done by applying one k-transfer. So let’s assume that k ≥ 3. Note that it’s
enough to learn how to cyclically shift the first three elements of the permutation and how to move any
three adjacent elements to the beginning of the permutation. Moreover, it’s easy to make sure that the
algorithm of transferring two adjacent elements to the beginning of the permutation considered above is
also suitable for the current case.

The first three elements of the permutation can be cyclically shifted by applying a k-transfer with
parameters a = 3, b = 1, and then two k-transfers with parameters a = 2, b = 3. For example,
if n = 7, k = 4 and and the permutation is equals to 1, 2, 3, 4, 5, 6, 7, it will change as follows:
1, 2, 3, 4, 5, 6, 7→ 3, 4, 5, 6, 1, 2, 7→ 3, 2, 4, 5, 6, 1, 7→ 3, 1, 2, 4, 5, 6, 7.

Note that cyclically shifting three elements to the left is the same as cyclically shifting them to the right
twice, so we learned cyclically shift three elements in any direction.

Now we should learn how to transform p to the q using these cyclic shifts: let’s find the first element of q
in the p and denote its index by j. If j > 2, we will cyclically shift to the right the elements with indices
j − 2, j − 1, j. By applying such operations, we can move the considered element to one of the first two
positions. If it turns out that element is in the second position at the end, then we will cyclically shift to
the left the elements with indices 1, 2, 3. Then we will do a similar sequence of operations for the second
element of q and so on up to the (n− 2)-th element. In the end we will get either q1, . . . , qn−2, qn−1, qn, or
q1, . . . , qn−2, qn, qn−1. Note that we couldn’t get the second permutation, because its parity differs from
the parity of q, and hence from the parity of p. That’s why we will get exactly q.

In total, the solution uses at most
n∑

i=1

(⌊
n−i
2

⌋
+ 2
)
≤ 2n+ 1

2

n∑
i=1

(n− i) = n(n−1)+8n
4 = n(n+7)

4 cyclic shifts

of three adjacent elements to the right. So, if k = 2 then n ≥ 4 and cyclic shift of three elements is a
single k-transfer, therefore the solution uses at most n(n+7)

4 ≤ n3 k-transfers. Otherwise, k ≥ 4, so n ≥ 6

and the solution uses at most n(n+7)
4 ·

(
3 + 2

(⌊
n−1
2

⌋
+ 1
))
≤ n(n+7)

4 · (n+ 4) ≤ n3 k-transfers.

Page 6 of 6

