
Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

Problem A. Natives
Author and Developer: Andrew Stankevich

Note that it is beneficial to give away least valuable treasures. Let us sort all treasures by increasing of
their value and give the first dn/2e treasures to the natives. To find the number k of treasures that should
be given away we can use the formula k = (n + 1) / 2, here ‘/’ denotes integer division.

Let us give sample programs in C++:

s o r t (a . begin () , a . end ()) ;
int sum = 0 ;
for (int i = (n + 1) / 2 ; i < n ; ++i){

sum += a [i] ;
}
cout << sum << ’ \n ’ ;

and Python:

a . s o r t ()
print (sum(a [(n + 1) // 2 :]))

Problem B. Balanced Illumination
Suggested and developed by Andrew Stankevich

The statement developes so called balanced Gray code. It was first described in words by Adam, Bakos,
Cohn, Pollac, Robinson, Tootill and others in 1950s.

Let us consider constructive algorithm that generates this code.

Any Gray code for n = 1 and n = 2 is OK. Balanced Gray codes for n = 3 and n = 4 are shown as sample
test. Let us show how to convert balanced Gray code for n to a balanced Gray code for n+ 2.

Let us first note that any Gray code is uniquely identified by a sequence of 2n integers from 1 to n—
indices of bits that are inverted when moving to the next code. For example, for n = 3 and Gray code in
sample test the corresponding sequence is [2, 3, 1, 3, 2, 3, 1, 3]. Note that ci is the number of occurrences
of i in this sequence. We will now consider such sequences instead of codes.

Additional notes. Cyclic shift of the Gray code sequence is also the correct Gray code sequence with the
same values of ci. We can also apply any substitution π changing all occurrences of i in the sequence to
π[i].

Let us have a Gray code for n, let us mark l positions in it where l is odd. Let us denote the segment
between adjacent marked positions up to the i-th one as αi, an element on the i-th marked position as
ji. Let us denote β reversed as βR.

Now if “α1j1α2j2 . . . αljl” is the Gray code for n, then “α1(n+ 2)αR1 (n+ 1)α1j1α2(n+ 1)αR2 (n+ 2)
α2j2α3(n+2)αR3 (n+1)α3j3 . . . jlαl(n+2)αRl (n+1)αl(n+2)jl−1α

R
l−1jl−2α

R
l−2 . . . j1α

R
1 (n+1)” is the Gray

code for n+ 2.

What is left is to describe which positions to mark in order to get balanced Gray code for n + 2
from balanced Gray code for n. The following algorithm does it. First apply a substitution to make
ci values sorted. Then make a cyclic shift to put 1 to the last place. Choose c′i as even integers equal to
either 2b2n+1/(n + 2)c, or 2d2n+1/(n + 2)e with the sum equal to 2n+2, sorted in increasing order. Set
bi = 2ci − c′i+2/2. Decrease b1 by one. Now mark bi occurrences of i, including the last occurrence of one.
Now apply the transformation from the previous paragraph to get a balanced Gray code for n+ 2.

Unfortunately, this, already quite cumbersome, construction doesn’t work for n = 3. However, there are
many ways to mark 5 positions at Gray code for n = 3 to succeed, including, for example, marking one 1
and four 2-s.

Page 1 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

Problem C. How Many Strings Are Less
Author: Evgeny Karpovich; developers: Evgeny Karpovich, Grigorii Shovkoplias

To solve this problem, we will use the trie data structure. Let’s insert all the strings of the set D in trie

Each vertex of the trie corresponds to some prefix of at least one string of the set. We want to maintain
the relevant vertex — the largest prefix of the current version of the string s, which is in the trie.

Then, we will use dynamic programming. Let’s calculate the value dp[v][c] for each vertex v of the trie.
dp[v][c] is vertex of the trie that will become relevant if the vertex v corresponds to some prefix of the
string s and the modification with character c begins in the next character. We will also calculate the
value ans[v][c] — how many strings in the trie are less than the prefix corresponding to vertex v if the
next character is c.

How to handle the modifications? We maintain a vertex in the trie and know the next character of the
current version of the string s.

• If the modification does not affect the current prefix and the character after it, then such
modifications can be ignored, they will not affect the response.

• Otherwise, we will go to the vertex of the trie such that the corresponding prefix is equal to the
prefix of the new version of the string s. And then we can use the value dp[v][c] to find the new
relevant vertex, the next character will obviously be c.

The solution works in O(α ·
∑
|Di|+ q). Here α is the size of the alphabet, and

∑
|Di| is the total length

of the strings in D.

Problem D. Exam registration
Author: Sergey Kopeliovich, developer: Grigoriy Khlytin

To solve this problem, we will use a binary search for the answer.

Let ans — the current answer for which we want to check the property: is it possible to achieve that the
dissatisfaction of any student does not exceed ans (note that this function is monotonic, that is, if we can
achieve that the dissatisfaction of any student does not exceed ans, then it does not exceed any k, where
k > ans).

To check this property for the answer ans, for each student we will try to shift it by the maximum number
of days w to the left, such that w ≤ ans.
This will be with the complexity O(n), because it is enough to go from left to right on all the days i for
which students are signed up, and maintain the position j indicating the leftmost “free” day (for which
there are still free places). We need to check if j is from i no further than ans days, and at the same time
we can move x students from day i to day j — then we will do this for the largest x.

If the problem has an answer other than −1, then this answer will be in the range from 0 to n−1 inclusive
(because when a student moves from the first to the last day, his dissatisfaction will be equal to n − 1).
Based on this fact, binary search will work for O(log n).

The final asymptotic of the solution will be O(n · log n).

Problem E. Fair Robbery
Problem author and developer: Daniil Oreshnikov

Let’s consider any k. We can note that only the minimal and maximal amounts of money on both left
and right parts of the street affect the answer. By the left side we mean the people who are not getting
robbed and on the right side there are people who lose a fraction of t of their money. Also, let’s note that

Page 2 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

maximizing the amount of stolen money is equivalent to maximizing t which can be deduced from the
formula for b given in the statements.

Let’s introduce the following values: minleft = min(a1, . . . , ak−1), maxleft = max(a1, . . . , ak−1) and, on
the right side, minright = min(ak, . . . , an), maxright = max(ak, . . . , an). Case of k = 1 can be considered
separately since left-values are undefined. In this case the least unfair plan has t = 1 since all townspeople
losing all their money will result in max(anew)−min(anew) being minimal possible and equal to 0 while
the amount of stolen money is maximized.

For k > 1 it is enough to consider the four said values. Global maximum after the robbery equals to
max(maxleft, (1− t)maxright) while minimum equals to min(minleft, (1− t)minright). To find an optimal t
let us consider the cases of possible relations between them:

1. maxleft ≥ maxright and minleft ≥ minright
In this case max(anew) = maxleft since right side maximum can not increase. And in the same way
min(anew) = (1− t)minright. The difference between them is minimal when t = 0.

2. maxleft ≥ maxright and minleft < minright
Same in this case, maximum always equals to maxleft, so the smallest difference is obtained with
largest minimum. It’s guaranteed to be less than or equal to minleft, and maximal t for which holds
min(anew) = minleft also implies that minleft = (1− t)minright, so the answer is t = 1− minleft

minright
.

3. maxleft < maxright and minleft ≥ minright
Same as in the first case, min(anew) equals to (1 − t)minright. And the maximum depends on t
in following way: for t ≤ 1 − maxleft

maxright
the maximum equals to (1 − t)maxright reaching its bottom

value maxleft in t = 1 − maxleft
maxright

, after which it stops decreasing. Since minimal value continues to
decrease, larger t will give larger unfairness. And with t in this interval the unfairness equals to
(1− t)(maxright−minright) hitting its minimal value in maximal possible t = 1− maxleft

maxright
.

4. maxleft < maxright and minleft < minright
Joining the ideas mentioned above we can deduce that before t reaches the threshold of 1− maxleft

maxright
the maximum value keeps decreasing. In the same time either minimum equals to minleft in which
case the unfairness keeps decreasing, or the unfairness itself equals to (1 − t)(maxright−minright)
and also decreases.
If for such t the inequality minleft < (1− t)minright holds, we may increase t by making it equal to
1− minleft

minright
, so that the resulting unfairness doesn’t change while the total amount of money stolen

increases. This means that the answer is t = 1−min
(

maxleft
maxright

, minleft
minright

)
.

Let’s note that the answer for the last case also works in all other cases. So the general case answer can
be obtained as

t = max

{
0; 1− maxleft

maxright
; 1− minleft

minright

}
.

Another way to achieve the same answer is to notice that the only case in which it’s disadvantageous to
increase t is when max(anew) = maxleft and min(anew) = (1 − t)minright. Joining together all required
limits for t gives the same answer as before.

So in the end, for a certain k the answer can be found at O(1) time complexity if the values
[min |max]left|right are known. These values can be pre-calculated in O(n) time complexity with two linear
iterations over a in both directions (prefix- and suffix- minimums and maximums).

Problem F. Counting Antibodies
Problem author and developer: Rita Sablina

Note, that there are Vh ·Dh · Jh potential heavy chains — for each chain one variant from Vh, Dh and Jh
for fragments V , D and J is selected, respectively.

Page 3 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

Similarly, there are V·Jκ potential type κ light chains and Vλ · Jλ potential type λ light chains.

Each heavy chain is bonded with κ or λ light chain. In the immunoglobulin molecule one pair of heavy
and light chain, but chains in the both pairs are similar. So, total count of potential immunoglobulin
molecules can be counted with the formula (Vκ · Jκ + Vλ · Jλ) · Vh ·Dh · Jh
This problem demonstrates that it is sometimes quite difficult for a programmer to understand some
narrow subject area.

Problem G. The Math of Sailing
Problem author and developer: Daniil Oreshnikov

Let’s look at the equality between the maneuverability and stability: a1a4 + a2 + a3 = a1 + a4 + a2a3.
Note that xy can be rewritten as (x − 1)(y − 1) + x + y − 1 which means that if we denote the sum
a1 + a2 + a3 + a4 as A, we can rewrite maneuverability as

m = (a1 − 1)(a4 − 1) + a1 + a4 − 1 + a2 + a3 = A− 1 + (a1 − 1)(a4 − 1)

and stability in the same way as
s = A− 1 + (a2 − 1)(a3 − 1).

This means that we have to achieve an equality of

m−A+ 1 =
[
(a1 − 1)(a4 − 1) = (a2 − 1)(a3 − 1)

]
= s−A+ 1.

Since the order of the sails in these equations is unambiguous we can denote the minimum of all sails sizes
as a1 and the minimum of middle mast sails sizes as a2. In that case it’s sufficient to find an answer for
which the inequality a1 ≤ a2 ≤ a3 ≤ a4 holds.

Let’s consider initial sizes of pieces of fabric in non-decreasing order: tp1 ≤ tp2 ≤ tp3 ≤ tp4 . This
permutation p will later form the first line of an output. Let’s denote by qi the value tpi − 1,
the i-th size of piece of fabric in non-decreasing order, decreased by 1. We can note then that
(a1 − 1)(a4 − 1) = (a2 − 1)(a3 − 1) both have an upper limit of min(q1 · q4, q2 · q3). Indeed, if these
products are equal and each factor does not exceed a certain qi due to the problem statement then both
products do not exceed the minimal product of two values qi forming them. Let’s consider all cases of
which q is “paired” with q4. We get that if q1 is paired with q4 then each of those products can’t exceed
the desired limit of q1 · q4 and q2 · q3 respectively. And if q4 is paired with q2 or q3 then the other product
will not exceed q1 · q2 or q1 · q3 respectively, both of which do not exceed neither q2 · q3 nor q1 · q4.
With this we have estimated that m−A+ 1 = s−A+ 1 do not exceed min(q1 · q4, q2 · q3). Now we will
prove that this estimation is exact. More than that, we’ll prove that to reach this limit only one of the
pieces of fabric should be cut, which allows us to maximize the sum of sizes A alongside their products.
And if both of those values are maximized then m and s are maximized as well.

So if q1 · q4 < q2 · q3 let’s decrease the value of q2 · q3 down to q1 · q4 without changing the values of
q1 and q4 and vice versa. We only have to determine how to decrease the higher product. It’s sufficient
to consider the case of q1 · q4 < q2 · q3 since the other one is similar. In this case we have to choose
a1 = q1 + 1 and a4 = q4 + 1. To understand which a2 and a3 give the best result we can recall that
s = A− 1 + (a2 − 1)(a3 − 1) where A equals to a1 + a2 + a3 + a4. So basically we have to maximize the
sum a1 + a2 + a3 + a4 for a fixed product of (a2 − 1)(a3 − 1). And since both a1 and a4 are also already
selected and fixed, we just need to maximize the sum of (a2 − 1) and (a3 − 1) with their product being
a fixed number. It’s a common fact that the sum of such factors increases with them moving one from
another, so such sum is maximized when only the smaller factor gets decreased.

The resulting sails sizes will be equal to q1+1, q1q4q3
+1, q3+1, q4+1. Similar for the case when q1 ·q4 ≥ q2 ·q3,

the optimal answer is q2q3
q4

+1, q2 +1, q3 +1, q4 +1. As for the permutation p, we choose the permutation
used to sort ti in non-decreasing order mentioned above. The time complexity of this solution is O(1).

Page 4 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

Problem H. Lots of Parabolas
Author: Mikhail Pyaderkin, developer: Sergey Melnikov, tutorial: Andrew Stankevich

It turns out that it is possible to use half-plane intersection algorithm for this problem. It works for any
convex functions.

Consider all parabolas with a > 0, that is, ones for which the point must be above the parabola. For each
possible x find the topmost point for these parabolas. The resulting function low(x) is concave.

Similarly consider all parabolas with a < 0, that is, ones for which the point must be below the parabola.
For each possible coordinate x find the bottom point for these parabolas. The resulting function up(x) is
convex.

Now consider the difference f(x) = up(x)− low(x). This function is convex. Its maximum can therefore
be found using ternary search. To calculate the value of f at x we evaluate all quadratic functions at x
and choose maximum from among those with a > 0 and minimum from among those with a < 0.

The maximum value of f is positive, we use the corresponding x as the answer. Find maximum from
parabola coordinates with a > 0 and minimum from among those with a < 0, the take their average as y.

Page 5 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

Problem I. Wheel of Fortune
Author: Gennady Korotkevich, developer: Nikolay Vedernikov, translation: Rita Sablina

If there is only one word in the stolen list, Katya will win.

Otherwise if there is a letter that doesn’t occur in all words in the list, Katya couldn’t win with a guarantee:
for any letter she names there will be a word without this letter. So if this word is hidden, she will lose.

Katya names a letter that occurs in all words in the list. If there are several such letters, Katya can name
any of them. Naming a letter splits the list in several groups. In one group there will be a words with the
same position of named letter.

For each group algorithm without already named letter will be repeated.

In other words, letter splits words set in subsets, for each subset the algorithm runs recursively. There
are 26 letter, so maximum recursion depth will be 26. Each word on each depth will occur only once. The
solution works in O(s ·N · L), where s is the size of the alphabet.

Problem J. Yurik and Woodwork Lesson
Author: Andrew Stankevich, developer: Mike Perveev

To begin with, let’s understand that the last two conditions that a nice board must satisfy, mean that
in each row some, possibly zero, number of cells on the left and on the right should be cut away. What
is more, the number of cells that were cut away on the left in row i should be not less that the number
of such cells in row i − 1. Similarly, the number of cells that were cut away on the right in row i should
be not greater than the number of such cells in row i− 1. If these conditions are not satisfied, there will
exist a column that has the fifth condition not satisfied.

Such reasonings lead to the fact that any correct way to cut away some cells is fixed in two paths of the
following form:

To satisfy the third condition, paths should not intersect each other. So, the problem now is to calculate
the number of pairs of not intersecting paths that begin and end in points shown in the picture.

Let’s calculate the number of pairs of all paths. Each path consists of N +M − 2 segments of length 1.
Each of them goes down or right. So, the number of all paths is

(
N+M−2
M−1

)
because we need to selectM −1

horizontal segments among N +M − 2 segments. So the number of pairs of paths is
(
N+M−2
M−1

)2
.

Now we need to subtract the number of pairs of intersecting paths from the answer. Consider a picture of
a pair of intersecting paths and note that each pair of such paths unambiguously corresponds to another
pair and vise versa. Consider the last intersection point of two paths. It exists because we consider only
pairs on intersecting paths. After this point paths never intersect each other. Let’s take ends of two paths
and swap it with each other: the end of the first path will be the end of the second one and vise versa.
Example of such transformation is illustrated on the picture below:

Page 6 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

The number of pairs of such paths equals to
(
N+M−2
M−2

)
·
(
N+M−2
N−2

)
. So the answer is:(

N+M−2
M−1

)2 − (N+M−2
M−2

)
·
(
N+M−2
N−2

)
. We can transform it into a more simple form:

(
N+M−1

M

)
·
(
N+M−1
M−1

)
N +M − 1

.

Problem K. Railroad sorting
Author and developer: Andrew Stankevich

We will send the cars to the exit track one at a time in ascending order.

If the i-th car is still on the input track by the time when the first i−1 cars is already on the output track,
then we send all cars in front of the i car on the input track and itself to the first dead end, after which
let’s send it from the first dead end to the output track. This requires no more than n− 1 commands to
move the previous cars, and two more commands to move the i-th car to and from the first dead end.

If the i-th car is in one of the dead ends, then we send all the cars in front of the same dead end to another
dead end, and this car itself is sent to the output track. This requires no more than n− 1 commands to
move the previous cars, and one more command to move the i-th car out of the dead end.

As a result, no more than n+ 1 commands are used for each of the n cars, which means that in total no
more than n2 + n commands are required, which is less than 2 cdot106.

Problem L. Birthday
Author, developer: Evgeny Karpovich, translation: Mikhail Dvorkin

For simplicity, let’s consider ai ≤ bi, otherwise just swap them.

Let’s first solve the problem on the entire array. Note that if the sum of all bi is not divisible by k, it is
the desired answer, otherwise, we need to select exactly one card and take its ai instead of bi, but having
ai mod k 6= bi mod k, and minimizing the value bi − ai.
Let’s make two arrays c and pref . If ai mod k 6= bi mod k, then ci = bi − ai, otherwise ci = +∞. A pref
is the array of prefix sums, prefi = prefi−1 + bi. Define min(l, r) as the minimum on the subsegment of
the array c with indices l . . . r. Now the answer for each subsegment is either prefr− prefl−1, if this value
is not divisible by k, or prefr − prefl−1 −min(l, r).
In both cases we have a term prefr − prefl−1, so let’s count the sum of such terms over all subsegments.
The value of prefi will be taken with coefficient -1 (i. e. as a left border) for (n − i) subsegments, and
with coefficient +1 (i. e. as a right border) for i subsegments.

Now we need to count separately the subsegments in which prefr mod k = prefl−1 mod k. Let’s for each
remainder x find all positions i in which prefi mod k = x. Let’s process each remainder separately.

Consider that we have the list of positions for some fixed remainder: pos1, pos2, . . . , posm. Note that we

need to substract from the overall answer the following value:
m∑
l=1

m∑
r=l+1

min(posl + 1, posr). To do this,

let’s make array d, where di = min(posi + 1, posi+1) (minimum on a subsegment of array c can be found
using a data structure like Segments tree). In the array d we now need to calculate the sum of minimums
over all subsegments. That can be done using a linear-time algorithm or using a Segments tree. To do
this, for each element i let’s find: in how many subsegments the element i is the leftmost minimum. Let

Page 7 of 8

Twenty Second Russia Team Open, High School Programming Contest
More than 50 locations in Russia and other countries, December 12, 2021

left be the closest element to the left which is less than or equal, and let right be the closest element
to the right which is strictly less. Then the number of subsegments in which element i is the leftmost
minimum equals (i− left) · (right− i).
Now we need to process those segments in which it is impossible to select sides to receive a sum that is
indivisible by k. On such segments the smallest element equals +∞, so for each such segment we need to
subtract prefr − prefl−1 from the total answer.

The solution works in O(n log n).

Page 8 of 8

