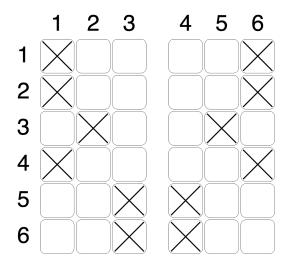

Задача 1. Посадка в самолет


Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

В самолетах авиакомпании Битавиа кресла расположены в n рядов, при этом в каждом ряду по шесть мест, между третьим и четвертым местом находится проход. Некоторые пассажиры регистрируются заранее онлайн, другие пассажиры регистрируются на стойке регистрации в аэропорту.

При онлайн-регистрации пассажир может выбрать любое место и не может его затем менять. Например, при n=6 рассадка в самолете после онлайн-регистрации может выглядеть так (крестиками отмечены занятые места):

На стойку регистрации придут m пассажиров. По правилам Битавиа нужно рассадить их в самолете таким образом, чтобы итоговая рассадка в самолете была симметрична относительно прохода. То есть, если в некотором ряду на первом кресле сидит пассажир, то в том же ряду на шестом кресле тоже должен сидеть пассажир. То же самое справедливо для второго и пятого, третьего и четвертого кресел, соответственно. При этом пересаживать пассажиров, прошедших онлайн-регистрацию нельзя. В исходную рассадку, показанную на рисунке выше, можно добавить семь пассажиров, удовлетворив условие симметрии, например, следующим образом:

Вам дана рассадка пассажиров после онлайн-регистрации. Требуется рассадить m пассажиров так, чтобы итоговая рассадка в самолете была симметрична относительно прохода, или определить, что это невозможно.

Формат входных данных

В первой строке содержатся два целых числа n и m — количество рядов в самолете и количество пассажиров, которые придут на стойку регистрации ($1 \le n \le 1000, 0 \le m \le 6000$).

В следующих n строках задана изначальная рассадка в самолете после онлайн-регистрации. В каждой строке содержится по шесть символов, при этом i-й символ j-й строки равен «X» (заглавная английская X), если i-е место в j-м ряду уже занято и « . » (точка) иначе.

Формат выходных данных

Если искомой рассадки не существует, выведите «Impossible».

Иначе выведите n строк по шесть символов — итоговую рассадку в самолете. При этом i-й символ j-й строки должен быть равен «Х», если место занято, и «.», если свободно. Если существует несколько решений, разрешается вывести любое.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	15	m = 0		первая ошибка
2	16	Изначально в самолете все места свободны		первая ошибка
3	17	m = 1		первая ошибка
4	18	Изначально в самолете занято ровно одно место		первая ошибка
5	34	нет	1–4	первая ошибка

Примеры

стандартный ввод	стандартный вывод
1 0	X.XX.X
X.XX.X	
2 1	X.XX.X
X.XX.X	XX
X	
3 2	Impossible
X.XX.X	
••••	
XX.X	
1 103	Impossible
. X . XXX	
6 7	XX
X	XX
	.XX.
X.	XX
X	XX
	XX
XX	

Замечание

Выше приведены пять примеров входных данных.

1) В первом примере m=0, а рассадка в самолете симметрична, поэтому итоговая рассадка совпадает с исходной.

Всероссийская олимпиада школьников по информатике 2024, региональный этап День 1, 20 января 2024 года

- 2) Во втором примере есть только один способ рассадить пассажиров симметрично.
- 3) В третьем примере существовало бы решение, при m=1, но при m=2 не существует способа рассадить всех пассажиров симметрично.
- 4) В четвертом примере требуется рассадить больше пассажиров чем свободных мест в самолете.
- 5) Пятый примере соответствует ситуации, рассмотренной на рисунках в тексте условия. В этом примере существует несколько решений, приведено одно из них.

Задача 2. Битоническая последовательность

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Последовательность $[b_1, b_2, \ldots, b_k]$ называется битонической, если выполнены неравенства $b_1 < b_2 < \ldots < b_i > \ldots > b_k$ для некоторого $1 \le i \le k$.

Например, последовательности [1], [1,2,3,2], [1,4,10], [3,2] являются битоническими, а последовательности [1,1], [2,1,3] — нет.

Задана последовательность $[a_1, a_2, \ldots, a_n]$. Требуется количество пар (l, r) таких, что $1 \le l \le r \le n$ и последовательность $[a_l, a_{l+1}, \ldots, a_r]$ является битонической.

Формат входных данных

Первая строка ввода содержит число $n \ (1 \le n \le 300\,000)$.

Вторая строка ввода содержит n целых чисел: $a_1, a_2, \ldots, a_n \ (1 \le a_i \le n)$.

Формат выходных данных

Выведите одно число — количество пар (l,r), таких, что $1 \le l \le r \le n$ и последовательность $[a_l, a_{l+1}, \ldots, a_r]$ является битонической.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	27	$n \leqslant 500$		первая ошибка
2	14	$n \leqslant 5000$	1	первая ошибка
3	20	все числа a_i различны		первая ошибка
4	39	_	1–3	первая ошибка

Примеры

стандартный ввод	стандартный вывод
5	11
1 1 2 3 1	
3	3
1 1 1	

Замечание

В первом примере подходят следующие пары:

- (1, 1), последовательность [1]
- (2, 2), последовательность [1]
- (2,3), последовательность [1,2]
- (2, 4), последовательность [1, 2, 3]
- (2, 5), последовательность [1, 2, 3, 1]
- (3, 3), последовательность [2]
- (3,4), последовательность [2,3]
- (3, 5), последовательность [2, 3, 1]
- (4, 4), последовательность [3]
- (4, 5), последовательность [3, 1]
- (5,5), последовательность [1]

Задача 3. Игра с таблицей

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Дана таблица A из h строк и w столбцов, в каждой ячейке которой записано целое число. Строки пронумерованы от 1 до h сверху вниз, столбцы пронумерованы от 1 до w слева направо.

Разрешается применять к этой таблице следующие операции:

- выбрать столбец таблицы и удалить его (столбцы слева и справа от него становятся соседними);
- выбрать строку таблицы и удалить ее (строки сверху и снизу от нее становятся соседними).

Эти операции разрешается применить произвольное число раз в любом порядке.

Определите, возможно ли при помощи этих операций получить из исходной таблицу с суммой чисел, равной заданному числу s, и если да, то какие операции и в каком порядке необходимо применить.

Формат входных данных

Первая строка ввода содержит числа h и w — размеры таблицы $(1 \le h, w \le 15)$. Каждая из следующих h строк содержит по w целых чисел — таблицу A $(0 \le A_{i,j} \le 10^9)$. В последней строке ввода находится число s — необходимая сумма $(1 \le s \le 10^{18})$.

Формат выходных данных

Если получить таблицу с суммой чисел s из исходной невозможно, выведите строку «NO». Иначе:

- В первой строке выведите строку «YES».
- Во второй строке выведите единственное число k количество операций с таблицей, которые необходимо применить, чтобы получить из неё таблицу с суммой чисел s.
- В каждой из следующих k строк выведите по два целых числа t_j, i_j , где $t_j = 1$, если очередная операция производится со строкой, и $t_j = 2$, если она производится со столбцом таблицы. Число i_j должно быть равно номеру строки или столбца, соответственно, в ucxodhoù нумерации, с которой эта операция производится.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	17	h = 1		первая ошибка
2	6	сумма чисел в i -й строке не превосходит i		первая ошибка
3	10	$h \leqslant 3$	1	первая ошибка
4	13	$h, w \leqslant 10$		первая ошибка
5	13	$h, w \leqslant 12$	4	первая ошибка
6	12	$a_{i,j} \leqslant 6$		первая ошибка
7	29		1–6	первая ошибка

Примеры

стандартный ввод	стандартный вывод
3 3	YES
1 2 3	2
2 3 1	1 3
3 1 2	2 3
8	
2 3	NO
2 2 2	
2 2 2	
5	
5 5	YES
1 2 1 4 5	3
2 5 4 1 2	1 4
4 2 4 3 1	1 5
5 5 3 2 4	2 1
1 2 4 5 2	
34	

Замечание

В первом примере изначально дана следующая таблица:

1	2	3
2	3	1
3	1	2

Удалив третьи строку и столбец получим таблицу с суммой чисел 8:

Во втором примере можно показать, что разрешенными операциями невозможно получить таблицу с суммой чисел 5 из исходной.

В третьем примере изначально дана таблица:

1	2	1	4	5
2	5	4	1	2
4	2	4	3	1
5	5	3	2	4
1	2	4	5	2

Удалив последние две строки и первый столбец, получим таблицу с суммой чисел 34:

2 5 4 1 2 1 4 5 2 1 4 5 2 1	4 5
	1 1 0
$ 4 2 4 3 1 \rightarrow 2 5 1 2 \rightarrow 2 5 4 1 2 \rightarrow 5 4 $	1 2
$\begin{bmatrix} 5 & 5 & 2 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 4 & 2 & 4 & 3 & 1 \\ 4 & 2 & 4 & 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 4 & 2 & 4 & 2 & 1 \\ 2 & 4 & 3 & 1 & 2 \end{bmatrix}$	2 1
$\begin{vmatrix} 5 & 5 & 3 & 2 & 4 \end{vmatrix}$ $\begin{vmatrix} 5 & 5 & 2 & 2 & 4 \end{vmatrix}$ $\begin{vmatrix} 4 & 2 & 4 & 3 & 1 & 2 & 4 \end{vmatrix}$	\circ
1 2 4 5 2 3 3 2 4	

Задача 4. Выбор столицы

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Дано неориентированное дерево — связный граф из n вершин без циклов, и число k. Зафиксируем некоторую вершину s дерева и назовем ее столицей.

Ориентируем ребра дерева в направлении от столицы. Иными словами, ориентируем ребро (u,v) в направлении $u \to v$, если при подвешивании дерева за вершину s вершина u является родителем вершины v. Заметим, что при таком ориентировании ребер каждая вершина достижима из столицы.

Определим расстояние до вершины v графа как минимальное количество ребер на пути из s в v. Назовем доступностью вершины s максимальное из расстояний до всех вершин.

Разрешается добавить в дерево не более k дополнительных ориентированных ребер.

Для каждой вершины s дерева определите, какой минимальной docmynhocmu можно достичь, если выбрать вершину s в качестве столицы.

Обратите внимание, что в некоторых подзадачах требуется вывести ответ только для первой вершины.

Формат входных данных

Первая строка содержит три целых числа n, k и t $(2 \leqslant n \leqslant 2 \cdot 10^5, 1 \leqslant k \leqslant n-1, n \cdot k \leqslant 2 \cdot 10^5, 0 \leqslant t \leqslant 1)$ — количество вершин дерева, ограничение на максимальное количество добавленных ребер и число t, равное 0, если нужно вывести ответ только для вершины с номером 1, и равное 1 иначе.

Каждая из следующих n-1 строк содержит два целых числа $u_i, v_i \ (1 \leqslant u_i, v_i \leqslant n)$ — ребра дерева.

Гарантируется, что заданные ребра образуют дерево.

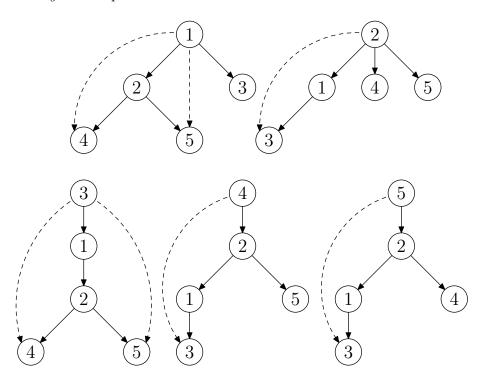
Формат выходных данных

В случае, если t=0, выведите единственное целое число: минимальную docmynhocmb, которую можно достичь, выбрав вершину с номером 1 в качестве столицы, и добавив не более k дополнительных ориентированных ребер.

В случае, если t=1, выведите n чисел: i-е число равняется минимальной docmynhocmu, которую можно достичь, выбрав вершину i в качестве столицы, и добавив не более k дополнительных ориентированных ребер.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.


Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	5	$u_i = i, v_i = i + 1, t = 0$		первая ошибка
2	5	$k = 1, n \leqslant 2000, t = 0$		первая ошибка
3	10	k = 1, t = 0	2	первая ошибка
4	5	$u_i = i, v_i = i + 1$	1	первая ошибка
5	5	$n \leqslant 16$		первая ошибка
6	10	$n \leqslant 50$	5	первая ошибка
7	10	$n \leqslant 400$	5, 6	первая ошибка
8	10	$n \leqslant 2000$	5, 6, 7	первая ошибка
9	25	$n \cdot k \leqslant 50000$	2, 5, 6, 7, 8	первая ошибка
10	15	нет	1–9	первая ошибка

Примеры

стандартный ввод	стандартный вывод
5 2 1	1 1 2 2 2
1 2	
1 3	
2 4	
2 5	
3 1 0	1
1 2	
2 3	

Замечание

На рисунке приведены иллюстрации к первому примеру. Пунктирными линиями обозначены добавленные ребра. Для вершин 1 и 2 минимальная доступность равняется 1, а для вершин 3, 4 и 5 минимальная docmynnocmь равняется 2.

