
Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

Problem A. Colony of Bacteria
Author of the problem: Egor Yulin, developer: Nikolay Vedernikov

This problem involves deriving a formula. There are many patterns that need to be noticed to derive the
final formula. Let’s consider one of them.

Consider the horizontal and vertical lines where the bacteria are initially placed. Every second,
it expands upwards and downwards, so in one second, the colony will fit into a square of size
(2k − 1) × (2k − 1). However, every odd second, we have an unfilled corner of the square growing.
It can be observed that its length will be equal to b(k − 1)/2c. Therefore, the area will be equal to
1 + 2 + .. + b(k − 1)/2c. Using the formula for the arithmetic progression, we find that the area of the
corner is b(k − 1)/2c · b(k + 1)/2c/2. Since there are four such corners, the total area cut off from the
square will be 4 · b(k− 1)/2c · b(k+ 1)/2c/2 = 2 · b(k− 1)/2c · b(k+ 1)/2c. Thus, the area of the bacterial
colony will be equal to (2k − 1) · (2k − 1)− 2 · b(k − 1)/2c · b(k + 1)/2c.

Problem B. Two-Story Advent Calendar
Author and developer of the problem: Rita Sablin

Let’s consider one possible solution to this problem.

First, we will represent each box as a segment on a line. Each box i is characterized by its left and right
boundaries li and ri, as well as the number xi written on it. The first boxes on both levels have a left
boundary at point 0.

We will divide all boxes into two types: good and problematic. For a good box, if it is on the upper
level, then all boxes it lies on have a greater number, and vice versa for a good box on the lower level.
Problematic boxes are those that are under boxes with a greater number or lie on boxes with a smaller
number. In this problem, boxes that only intersect at their ends do not interfere with each other. We will
not consider boxes that only intersect at their ends as lying on top of each other.

Formally, box i with boundaries li and ri and number xi is considered good if for any box j on the
other level with boundaries and number lj , rj , and xj , if lj ≤ li and rj > li, or lj < ri and rj ≥ ri, or
li ≤ lj < rj ≤ ri, then xi < xj if i is on the upper level, and xi > xj in the opposite case. Problematic
boxes are all the others.

Note that a good box can always be left in place. We will determine for each box, using two pointers,
whether it is good or problematic. Also, for each problematic box i on the upper level, we will find the right
boundary of the rightmost problematic box j on the lower level that it lies on, and for each problematic
box j on the lower level, we will find the right boundary of the rightmost box i on the upper level that
it lies under. Additionally, for each problematic box i on the upper level, we will need to keep the right
end of box j on the lower level such that lj < li < rj , if such a box exists. For each problematic box j
on the lower level, we will keep the right end of box i on the upper level such that li < lj < ri, if such a
box exists. We will call this boundary r. If such a box cannot be found, we will keep the left end of the
current box in r.

Next, we will solve this problem using dynamic programming. The parameter for dynamic programming
will be the coordinates of the ends of the boxes. We will represent the coordinates as events and sort them
in non-decreasing order. We denote dp[i] as the minimum number of boxes that need to be removed to
make the calendar from coordinate 0 to i inclusive convenient. Note that there may be pairs of identical
coordinates in the event array if boxes end at the same point. We set dp[0] = 0.

If the box is good, then dp[i] = dp[i− 1].

If the box ending at i is problematic and it lies on or under a problematic box that ends to its
right, then box i cannot be left if we want to make the calendar from 0 to i convenient. In this case,
dp[i] = min(dp[l] + 1, dp[r] + 1), where dp[l] is the minimum number of boxes that needed to be removed
before the left boundary of the current box. r may coincide with l, but if not, then dp[r] may be less than

Page 1 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

dp[l] — if the result at the end of the box it lies on is better, but it was calculated later since the current
box starts before the one it lies on or under ends.

If the box ending at i is problematic and it lies on or under a problematic box that ends to its
left or at the same point, then we need to choose the best result between removing the current box
dp[i] = min(dp[l] + 1, dp[r] + 1) and dp[i − 1] — the previous coordinate will correspond to the situation
where we leave the current one but remove the problematic one on or under which the current one lies.

The answer will be in dp[a1 + a2 + . . .+ an].

Example in the figure:

1

0 2 3 4 5 6 8

6 24

3 5

7

dp[0] = 0. dp[2] = 1, because box number 3 lies on box number 7, which ends to the right, so box 3 cannot
be removed for the calendar to be convenient at coordinate 2. dp[3] = 1, because box number 5 lies on
box number 7, which ends to the right, so box 5 cannot be removed for the calendar to be convenient at
coordinate 3. Then dp[3] = dp[2] + 1, where 2 is the left boundary of box 5.

dp[4] = dp[0] + 1 = 1, because box 7 cannot be removed for the calendar to be convenient at coordinate
4. dp[5] = dp[4] + 1 = 2, dp[6] = dp[5] + 1 = 3 for the same reason. dp[8] will be considered twice. If we
consider 8 as the right boundary of box 2, then it cannot be removed, and dp[8] = dp[6] + 1 = 4. When
we consider 8 as the right boundary of box 1, it is beneficial to remove box 1 rather than 2, 4, 6, under
which it lies, but the leftmost problematic box that lies on 1 — box 7 — ends to the right of where 1
starts, and the dynamic value for the right end of 7 is better. dp[8] = min(dp[3], dp[4]) + 1 = 2. In the
end, the answer for this example will be 2 — we need to remove boxes 1 and 7.

Problem C. Intermediate Verticality
Author and problem developer: Mikhail Ivanov

It turns out that in any connected graph, it is possible to construct a tree of any intermediate verticality in
linear time. We start with a tree with the maximum possible verticality — a depth-first search tree, which
has a verticality of m−n+ 1. If we perform (m−n+ 1)−h times a transform that increases the number
of horizontal edges by one, then we will obtain the required tree. Firstly, we need to learn how to perform
this transform in linear time. We will traverse the graph along the spanning tree and find a vertical edge
uv with the largest depth (distance to the root along the tree edges) of vertex u (assuming that the depth
of v is greater than that of u). Since v has a positive depth, this vertex has a parent w; thus, there is a
tree edge wv in the graph. Hence, let us remove the edge wv from the spanning tree and add uv instead.
Then, the status of no edge, except for uv and wv, will change — this can be easily established by case
analysis, using the fact that u is the deepest possible; wv will become horizontal from being a tree edge,
and uv will become a tree edge from being vertical. Thus, the required transform can be implemented in
linear time, resulting in a quadratic algorithm with a time complexity of O(m(m+ 1− n− h)).

To perform all of the above in total linear time, we only need to learn how to execute the transform
described above in O(1) time (possibly with linear preprocessing). Note that the required re-hanging not
only does not add new vertical edges (and always removes only one old edge, while leaving the others
unchanged), but also cannot change the depth of the top vertex u of any vertical edge uv. Therefore, the
following algorithm will work: we will run a depth-first search once at the very beginning and obtain a
normal spanning tree. During this process, we will store the parent of each vertex in an array p, and also
sort all vertical edges by the depth of their top vertex using counting sort. We will iterate through the
last (m−n+ 1)−h edges from this list (i.e., with the deepest u) and assign p[v] := u to them. The edges
connecting v and p[v] will become horizontal. This algorithm has a time complexity of O(m).

Page 2 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

Problem D. Two Arrays
Author and problem developer: Pavel Skobelin

Let’s rephrase the problem. Let’s consider a pair of numbers (ai, bi) as a point on a plane. Then, using
the given action, we can move this point diagonally by one cell (+1, +1). The goal is to place all points
within a rectangle of size x× y using this action.

It is clear that a specific point will always remain on the same diagonal. Let’s number the diagonals: we
say that the point (x, y) belongs to the diagonal numbered y− x (the diagonal number can be negative).

Thus, the criterion for the impossibility of a solution is clear: we find the number of the maximum
diagonal — Dmax, and the minimum diagonal — Dmin, on which there is at least one point. It is not
difficult to show that a solution always exists if Dmax −Dmin ≤ x+ y (since in a rectangle of size x× y,
the maximum difference in diagonal numbers is x + y — that is, from the upper left to the lower right
point). Otherwise, a solution does not exist.

Now let’s understand how to find the number of necessary actions. Let us define:

X = max
i∈[1...n]

(xi), Y = max
i∈[1...n]

(yi)

Our goal is to fit all points into the rectangle x× y. Let’s determine where its upper right corner should
be located. Obviously, its x-coordinate must be at least X (otherwise, it would be impossible to place a
point with the first coordinate X in the rectangle, since performing an action on it would only increase
its first coordinate). Similarly, its y-coordinate must be at least Y . So initially, we set the coordinates of
the upper right corner to (X, Y ) — that is, the minimally possible values.

How can we minimize the number of actions? In fact, we need to choose the minimally possible coordinates
x and y for the upper right corner (that is, so that they cannot be decreased).

If all points are already within the rectangle or can be moved there, then this is the optimal arrangement.
If not, which points could be problematic (that is, which cannot fit into the current rectangle)? If such
points exist, they are the points with the minimum or maximum diagonal. How do we determine that
a point with the maximum diagonal does not fit into the rectangle? We need to check that its diagonal
number is greater than the maximum diagonal number of the considered rectangle: Dmax > (Y −X) +x.
If this is the case, then let’s move the rectangle up by ∆Y = Dmax − (Y −X)− x (Y := Y + ∆Y ). It is
clear that this is a necessary condition for the point with the maximum diagonal to fit into the rectangle.

A similar reasoning applies to the point with the minimum diagonal: if Dmin < (Y − X) − y, then we
move the rectangle to the right by ∆X = Dmin − (Y −X) + y (X := X + ∆X). It is also clear that this
is a necessary condition, meaning that without it, we would not be able to obtain any solution.

Note that from the two actions above, we will perform at most one, meaning that both conditions cannot
be satisfied simultaneously:

Dmax > (Y −X) + x (1)
Dmin < (Y −X)− y (2)

Because in such a case, by multiplying (2) by −1 and adding the two inequalities, we get

Dmax −Dmin > (Y −X) + x− (Y −X) + y = x+ y

Dmax −Dmin > x+ y

And we have ruled out such a case from the very beginning.

Thus, initially, both conditions could not be satisfied. It is also not difficult to show that after increasing
X, the first condition could not start being satisfied (Dmax > (Y − X) + x ≥ (Y − (X + ∆X)) + x).

Page 3 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

Similarly, the first condition could not be satisfied after increasing Y . Therefore, we made the necessary
adjustment to the coordinates. It is evident that this adjustment is sufficient: it is clear that if the diagonal
number of the vertex fits into the required rectangle, then the vertex itself can fit into it; otherwise, it
is located above/right of it — which is impossible, since we initially chose X and Y as the maximum
coordinates.

Thus, we have found the coordinates of the upper right corner of the rectangle. Now we just need to
calculate the number of actions: it is clear that for a specific point (xi, yi), the minimum number of
actions to fit into the rectangle is max(0, X − x[i]− x, Y − Y [i]− y). We just need to sum this value over
all points.

We obtain a solution to the problem in O(n) for each test case.

Problem E. Classics
Problem author: Fedor Ushakov, developer: Mikhail Perveev

First, let’s construct an array q1, q2, . . . , qn, where qi is the position of element i in the final array. There
are many ways to construct this array.

For example, we can use a segment tree. We will maintain a segment tree over an array t of length n,
where the i-th element will store 0 if the position i in the final array is not yet occupied, and 1 otherwise.
We will then process addition queries from the end. Initially, we will assign 0 to all elements of the array
t.

Suppose we want to process the addition of the number i. To determine its position in the final array, we
need to find the pi-th zero in the array t. The position of this zero will be the position of the number i in
the final array. After that, we need to replace 0 with 1, and also assign the position of the found zero to
qi. Finding the k-th zero and updating the array element can be done using the segment tree in O(log n)
time.

If using C++, one can utilize the data structure __gnu_pbds::tree (this data structure is also known as
ordered_set) instead of a segment tree.

Now that we have constructed the array q, we can proceed to solve the problem. Consider a moment in
time when the numbers 1, 2, . . . , i have been added to the array. Consider a certain sequence of numbers
x1, x2, . . . , xk, such that 1 ≤ x1 < x2 < . . . < xk ≤ i. This sequence will be an increasing subsequence
of the array if and only if its elements are present in the array in that exact order. In other words, the
inequality qx1 < qx2 < . . . < qxk

must hold. Thus, the length of the LIS (Longest Increasing Subsequence)
of the array after adding the first i numbers is equal to the length of the LIS of the array q1, q2, . . . , qi.
Now the problem has reduced to finding the LIS for each prefix of the constructed array q.

To do this, we will use the classical solution for finding the LIS inO(n log n) time. We will add elements one
by one from left to right, maintaining an array dp[i], where dp[i] is the minimum value of the element that
can end an increasing subsequence of length i. We will also maintain the current answer—the maximum
length of the increasing subsequence that we can obtain.

Suppose we have considered the elements q1, q2, . . . , qi−1 while maintaining the array dp, and the current
length of the LIS is k. Now we will consider the element qi. To do this, we will use binary search to find
the minimum number j such that dp[j] > qi. After that, if dp[j − 1] < qi, we will assign dp[j] the value of
qi. Finally, if the value of dp[j] was updated, we will assign the variable k the value max(k, j).

Thus, both parts of the solution work in O(n log n) time.

Problem F. Exchange and Deletion
Author and problem developer: Valery Rodionov

At each step, the last element jumps to the left and overwrites one of the previous elements. Note that
the elements 1, 2, . . . , n− k never jump, so their relative order is preserved. Let’s see which elements will

Page 4 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

be removed after k steps. These will be the elements n − k, n − k − 1, . . . , n − k − l + 1 (that is, some
suffix), because otherwise the sequence would not be increasing. These elements will be overwritten by
some l elements from n− k + 1 to n. We will fix a set of l elements from n− k + 1 to n that will remain
after k steps. We will call them good, while the remaining k − l will be called bad. We will fix the final
position of each good element (that is, which of the elements n − k, n − k − 1, . . . , n − k − l + 1 it will
overwrite). The bad elements are indistinguishable, so we can consider that they do not jump but simply
choose one of the bad elements to the left or the final position of some good element to jump to, while
remaining in place.

There are a total of k − l bad elements. Let the i-th (1 ≤ i ≤ k − l) bad element be bi. We will choose
a value pi for each bad element, which is either a position from n − k + 1 to bi, or some good element
greater than bi. We will construct a bijection between the sequences p1, p2, . . . , pk−l and the sequences of
deletions that place the good elements in their established final positions, as follows:

Let there be a sequence p1, p2, . . . , pk−l. We will make k steps. At each step, we will do the following. Let
the last element be good. Then, if it is chosen as pi for some bad element, it jumps to the position of the
rightmost of such bad elements. Otherwise, it jumps to its final position. Let the last element be bad.
Then it has chosen some position to the left of itself as pi (since otherwise it would have already been
overwritten by some good element). If there is a good element at position pi, we will jump to the final
position of this good element; otherwise, we will simply jump to position pi.

It is easy to see that in this way we can obtain any sequence of deletions that places all good elements in
their final positions.

The number of ways to choose pi is equal to (k− l+ i) (equivalent to choosing any good element or a bad
element to the left), so the total number of ways is k · (k − 1) · . . . · (k − l + 1) = k!/(k − l)!.
We also need to multiply by l! (the choice of final positions for good elements) and

(
k
l

)
(the choice of good

elements). Thus, the answer is the sum over l from 0 to min(k, n− k) of the values k!/(k − l)! · l! ·
(
k
l

)
.

Problem G. M-11 Highway
Problem authors: Alexandra Olemskaya, Alexander Ponkratov, developer: Alexander Ponkratov

Consider all points of type 1 and remember how many points of type 0 are to the left of it, let’s denote
this count as cnti. Next, for each point of type 1, find the farthest point from the current one such that
the distance between them does not exceed k, let its index be j. Then all points of type 1 from j to
i − 1 can potentially form a convenient triplet with point i, specifically cnti − cntp (j ≤ p < i) triplets.

Thus, we need to add to the answer
i−1∑
p=j

cnti − cntp = (i− j) ∗ cnti −
i−1∑
p=j

cntp. The farthest point can be

found using binary search or two pointers, and the contribution to the answer for the current point can
be calculated using prefix sums. Depending on the implementation, we can achieve a solution in O(n) or
O(n log n).

Problem H. Exploration Robots
Author and problem developer: Aleksandr Babin

Since the robots know their positions relative to each other, they can visit all the fields that are located
between them. After they do this, some segment [min{x, y},max{x, y}] of fields between them will be
visited. Furthermore, this segment can be expanded by one field on the left and right boundaries.

We will call a string u a border of the string s if u is simultaneously a suffix and a prefix of the string s.
It is claimed that if some experiment ends with the robots visiting the segment of fields [l, r], then the
substring s[l . . . r] is a border of the string s.

Moreover, if at some point the robots visited a segment of fields [l, r] such that s[l . . . r] is not a border,

Page 5 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

then s[l . . . r] is neither a suffix nor a prefix of the string; thus, the robots can guarantee the expansion of
this segment either to the left or to the right.

Therefore, we can reformulate the problem as follows: for a query (x, y), it is required to find a segment
of minimal length [l, r] such that x, y ∈ [l, r], and also s[l . . . r] is a border of the string s.

To do this efficiently, we will separately find the left and right boundaries. We will describe how to find
the right boundary (the left one is found in the same way, but the string s needs to be reversed first).

We will compute the array π1, . . . , πn—the prefix function of the string s, which is an array such that
π1 = 0 and πk equals the length of the longest non-trivial border of the string s[1 . . . k]. It is clear that
n, π[n], π[π[n]], . . . are the lengths of all borders of the string s. Then, in linear time, we can easily compute
the array q1, . . . , qn using dynamic programming, where qk is the smallest value such that s[qk . . . k] is a
border of the string s.

Now consider the query (x, y); we need to find the smallest k ≥ max{x, y} such that x, y ∈ [qk, k]. This will
be the border with the smallest right boundary that contains the pair of positions x, y. We can find such a
k for each query, for example, in an offline manner by sorting all queries in increasing order of min{x, y}.
After that, the set S, consisting of numbers k such that qk ≤ min{x, y}, will only expand, which means it
can be maintained in std::set with a total time of O(n log n). Then, to answer the query, it is sufficient
to use the .lower_bound method. As a result, we obtain an algorithm that runs in O(n log n) time.

Remark. It may seem incorrect that we are separately searching for the left and right boundaries in each
query. A small mathematical reasoning below should convince the reader otherwise.

Lemma. Let [l, r] and [a, b] be segments such that s[l . . . r] and s[a . . . b] are borders of the string s; then
J = [l, r] ∩ [a, b] is also a border of the string s. This is true because s[J ] is a suffix of either the string
s[l . . . r] or s[a . . . b], and is also a prefix of one of these two strings. Thus, s[J ] is a suffix of some border
of the string s, which means it is a suffix of the string s, and similarly, s[J ] is a prefix of the string s.
Therefore, s[J ] is both a prefix and a suffix of s, which means s[J ] is a border of the string s.

Let s[l . . . r] be the minimal border of the string s that contains the pair of positions (x, y), and let
s[p . . . r′] and s[l′ . . . q] be borders of s, respectively, with the minimal right boundary and the maximal
left boundary that contains the pair of positions (x, y). Then l ≤ l′ ≤ r′ ≤ r by the definition of s[p . . . r′]
and [l′ . . . q]. But also, s[l′ . . . r′] is a border of s by the lemma. However, due to the minimality of the
length [l, r] and the nesting [l′, r′] ⊆ [l, r], we have [l′, r′] = [l, r], which is what we needed to prove.

Problem I. Prank
Author and problem developer: Nikolay Vedernikov

We will create a stack and two pointers, one for each string. If the characters at the pointers in the strings
match and there are no letters on the stack, we consider that this letter has been preserved from the
initial string (and we move both pointers forward). Otherwise, there are two possible situations:

• The top of the stack has exactly the same letter. This means we can consider that these two identical
letters were placed together, as we have already removed the other paired letters, if there were any.
We will remove the letter from the stack and move the pointer in the string s2.

• The stack is empty or the top has a different letter. In this case, we will place this letter on the
stack and move the pointer for s2.

If we have examined all the characters of the string s1 (we can check that the pointer has reached the
end of the string) and the stack is ultimately empty, we consider that it is possible to obtain the string
s2 from the string s1 by applying pranks; otherwise, it is not possible.

Problem J. Nightmare Sum
Author and problem developer: Evgenii Pakhomov

Page 6 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

Let C = 300 000. Since all elements of the array are distinct, the total number of pairs (min, quotient)
is O(C logC) (the sum of the harmonic series).

Fix i — the position of the minimum. Notice that the quotient
⌊
max
min

⌋
can only take values

d = 1, 2, . . . ,
⌊
C
ai

⌋
. As already noted, all these values can be honestly enumerated. Let us assume we

know i and d. What segments will suit us?

The minimum on the segment must be ai, so l ≤ i ≤ r and there should be no numbers less than ai on
the segment. To achieve this, we can traverse the array from left to right and from right to left while
maintaining a stack of minimums. Then for all i, we can count the nearest number in the array to the
right/left of i that is less than ai.

It remains to understand what the maximum on the segment should be. Since we have fixed d, the
maximum must lie within the range [ai · d; ai · d+ ai− 1]. What restrictions does this condition impose on
l and r? The segment must not contain numbers greater than or equal to ai · (d+ 1), so l must be strictly
greater than the index of the nearest number to the left of i that is greater than or equal to ai · (d+ 1).
Similarly, r must be strictly less than the index of the nearest number to the right of i that is greater than
or equal to ai · (d+ 1). Additionally, there are restrictions on l and r from the other side: the maximum
must be at least ai · d, meaning l must not exceed the index of the nearest number to the left of i that is
greater than or equal to ai · d. Similarly, r must not be less than the index of the nearest number to the
right of i that is greater than or equal to ai · d.
Finding the nearest number to the left/right that is greater than or equal to x can be done using a segment
tree or binary search on the maximums stack. Thus, counting the specified restrictions on l and r will
take O(n log n logC) time.

Therefore, for a specific pair (i, d), we have restrictions of the form: x < l ≤ q and p ≤ r < y. How do we
recalculate the answer?

Let dl = q − x, dr = y − p. We want to add to the answer d · number of good segments. This value can
be easily computed using the inclusion-exclusion formula:

number of good segments = dl · (y − i) + dr · (i− x)− dl · dr

Thus, the asymptotic complexity of the final solution will be O(n log n logC).

Problem K. Petya’s Cryptography
Problem author: Demid Kucherenko, developer: Vladimir Riabchun

Any tree with n ≥ 2 vertices can be constructed with the following algorithm: we start with an edge, on
every step we chose a leaf v and a number i ≥ 1, after it we link i new nodes with the leaf v. After it the
number of paths of length 2 is increased by i(i+1)

2 .

To solve this problem let’s compute dp[n][s], which is equal to true if we can construct a tree with n
vertices with s paths of length 2.

dp[n][s] =
∨

1≤i≤n
dp[n− i][s− i(i+ 1)

2
]

This value should be evaluated lazily, the number of calculated elements does not exceed ≈ 2000.

Problem L. Two Scooters
Problem author: Nikolay Vedernikov, developer: Ekaterina Vedernikova

To solve the problem, you need to calculate two values and compare them. For company W, you need to
divide t by 60 to get the integer part, then multiply the resulting integer by 60. The resulting number of

Page 7 of 8



Russia Open 2024, High School Team Programming Contest
St. Petersburg, Novosibirsk, Almaty, Sirius, December 14, 2024

seconds should be multiplied by the price c1 to obtain the cost of the trip on the scooter of company W in
kopecks.

For company Y, you need to multiply t by the price c2. After that, the resulting number should be divided
by 100; if there is a remainder from the division, you should add 1 to the quotient. The resulting integer
number of rubles should be multiplied by 100 to also obtain the cost in kopecks.

Page 8 of 8


