
1

© R. Guerraoui

Wait-free Computing

Prof R. Guerraoui
Distributed Programming Laboratory

2

AMD Opteron (4 cores)

3

SUN’s Niagara CPU2 (8 cores)

4

Principles of an architecture

 Two fundamental components that fall apart:
processors and memory

5

Simple view

Memory

Bus

Processor
+ Cache

6

Shared object

Concurrent processes

7

public class Counter

private int c = 0;

public long getAndIncrement()
{
return c++;
}

Counter

8

Locked object

Locking (mutual exclusion)

9

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() {
 c++;
 }
 public synchronized void getAndincrement()
{
 return c++;
 }
 public synchronized int value() {
 return c;
 }
}

Implicit use of a lock

10

Locking with compare&swap()

§  A Compare&Swap object maintains a value x, init
to ⊥, and y;

§  It provides one operation: c&s(old,new);

ü Sequential spec:
●  c&s(old,new)
{y := x; if x = old then x := new; return(y)}

11

lock() {
repeat until
unlocked = this.c&s(unlocked,locked)
}

unlock() {
 this.c&s(locked,unlocked)
 }

Locking with compare&swap()

12

Locking with test&set()

§  A Test&Set object maintains binary values x, init
to 0, and y;

§  It provides one operation: t&s()

ü Sequential spec:
ü  t&s() {y := x; x: = 1; return(y);}

13

lock() {
repeat until (0 = this.t&s());
}

unlock() {
 this.setState(0);
 }

Locking with test&set()

14

lock() {
while (true)
 {
 repeat until (0 = this.getState());
 if 0 = (this.t&s()) return(true);
 }
}

unlock() {
 this.setState(0);
 }

Locking with test&set()

15

 Lock l = ...;
 l.lock();
 try {
// access the resource protected by this lock
 } finally {
 l.unlock();
 }

Explicit use of a lock

16

Locking (mutual exclusion)

 Difficult: 50% of the bugs reported in
Java come from the mis-use of
« synchronized »
 Fragile: a process holding a lock
prevents all others from progressing
 Slow: the act of locking itself impacts
performance

17

Locked object

One process at a time

18

Processes are asynchronous

 Page faults
 Pre-emptions
 Failures
 Cache misses, …

19

Processes are asynchronous

 A cache miss can delay a process by ten
instructions
 A page fault by few millions
 An os preemption by hundreds of millions…

20

Coarse grained locks => slow

Fine grained locks => errors

21

Processes are asynchronous

 Page faults, pre-emptions, failures,
cache misses, …

 A process can be delayed by millions of
instructions …

22

Alternative to locking?

23

Wait-free atomic objects

 Wait-freedom: every process that invokes
an operation eventually returns from the
invocation (robust … unlike locking)

 Atomicity: every operation appears to
execute instantaneously (as if the object
was locked…)

24

In short

 The fundamental question is how to
 wait-free implement high-level
 atomic objects out of primitive base objects

25 Shared object

Concurrent processes

26

Processes

§  We assume a finite set of processes

§  Processes are denoted by p1,..pN or p, q, r

§  Processes have unique identities and know

each other (unless explicitly stated otherwise)

27

Processes

 Processes are sequential units of
computations

 Unless explicitly stated otherwise, we make
no assumption on process (relative) speeds

28

Processes

p1

p2

p3

29

Processes
 A process either executes the algorithm
assigned to it or crashes

 A process that crashes does not recover (in
the context of the considered computation)

 A process that does not crash in a given
execution (computation or run) is called
correct (in that execution)

30

Processes

p1

p2

p3

crash

31

On objects and processes

 Processes execute local computation or
access shared objects through their
operations

 Every operation is expected to return a reply

32

Processes

p1

p2

p3

operation

operation

operation

33

On objects and processes

 Sequentiality means here that, after invoking
an operation op1 on some object O1, a
process does not invoke a new operation (on
the same or on some other object) until it
receives the reply for op1

 Remark. Sometimes we talk about operations
when we should be talking about operation
invocations

34

Processes

p1

p2

p3

operation

operation

operation

35

Atomicity

 Every operation appears to execute at some
indivisible point in time (called linearization
point) between the invocation and reply time
events

36

Atomicity

p1

p2

p3

operation

operation

operation

37

Atomicity

p1

p2

p3

operation

operation

operation

38

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash

39

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

40

Atomicity (the crash case)

p1

p2

p3

operation

operation

p2

41

Wait-freedom

 Any correct process that invokes an
operation eventually gets a reply, no matter
what happens to the other processes (crash
or very slow)

42

Wait-freedom

p1

p2

p3

operation

43

Wait-freedom
 Wait-freedom conveys the robustness of the
implementation

 With a wait-free implementation, a process
gets replies despite the crash of the n-1
other processes

 Note that this precludes implementations
based on locks (mutual exclusion)

44

Wait-freedom

p1

p2

p3

crash

operation

crash

45

Example 1

 The reader/writer synchronization problem
corresponds to the register object

 Basically, the processes need to read or
write a shared data structure such that the
value read by a process at a time t, is the
last value written before t

46

Register

 A register has two operations: read() and
write()

 We assume that a register contains an integer
for presentation simplicity, i.e., the value stored
in the register is an integer, denoted by x
(initially 0)

47

Sequential specification

 Sequential specification

  read()

  return(x)

  write(v)

  x <- v;

  return(ok)

48

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 2

 write(2) - ok

49

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 2

 write(2) - ok

50

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 write(2) - ok

51

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 write(2) - ok

52

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

53

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

54

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

55

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

56

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

57

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

58

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

59

Example 2

 The producer/consumer synchronization
problem corresponds to the queue object

 Producer processes create items that need
to be used by consumer processes

 An item cannot be consumed by two
processes and the first item produced is
the first consumed

60

Queue

 A queue has two operations:
enqueue() and dequeue()

 We assume that a queue internally
maintains a list x which exports
operation appends() to put an item at the
end of the list and remove() to remove
an element from the head of the list

61

Sequential specification

 dequeue()

  if(x=0) then return(nil);

  else return(x.remove())

 enqueue(v)

  x.append(v);

  return(ok)

62

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 deq() - x

 enq(y) - ok

63

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 deq() - x

 enq(y) - ok

64

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 enq(y) - ok

65

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - x

 enq(y) - ok

1

© R. Guerraoui

Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Register

 A register has two operations: read()
and write()

 

 Sequential specification

  read()

  return(x)

  write(v)

  x <- v; return(ok)

3

Simplifications

  We assume that registers contain only
integers

  Unless explicitely stated otherwise, registers
are initially supposed to contain 0

4

Space of registers

  Dimension 1: binary (boolean) – multivalued

  Dimension 2:
  SRSW (single reader, single writer)
  MRSW (multiple reader, single writer)
  MRMW (multiple reader, multiple writer)

  Dimension 3: safe – regular – atomic

5

Safe execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 25

6

Regular execution

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 1

7

Atomic execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

8

2 decades of hard work

  Theorem: A multivalued MRMW atomic
register can be implemented with binary
SRSW safe register

9

Algorithms

  The process executing the code is implicitely
assumed to be pi

  We assume a system of N processes

  NB. We distinguish base and high-level registers

10

Conventions
  The operations to be implemented are denoted
Read() and Write()
  Those of the base registers are denoted read()
and write()

  We omit the return(ok) instruction at the end
of Write() implementations

11

(1) From (binary) SRSW safe
to (binary) MRSW safe

  Read()
  return (Reg[i].read());

  We use an array of SRSW registers
 Reg[1,..,N]

  Write(v)
 for j = 1 to N

  Reg[j].write(v);

12

(2) From binary MRSW safe to
binary MRSW regular

  We use one MRSW safe register
  Read()

  return(Reg.read());

•  Write(v)

  if old ≠ v then
  Reg.write(v);
  old := v;

13

(3) From binary to M-Valued
MRSW regular

  Read()
  for j = 0 to M

  if Reg[j].read() = 1 then return(j)

  We use an array of MRSW registers
Reg[0,1,..,M] init to [1,0,..,0]

  Write(v)
  Reg[v].write(1);
  for j=v-1 downto 0

  Reg[j].write(0);

14

(4) From SRSW regular to
SRSW atomic

  Read()
  (t’,x’) = Reg.read();
  if t’ > t then t:=t’; x:=x’;
  return(x)

  We use one SRSW register Reg and two local
variables t and x

  Write(v)
  t := t+1;
  Reg.write(v,t);

15

(5) From SRSW atomic to
MRSW atomic

  We use N*N SRSW atomic registers
RReg[(1,1),(1,2),..,(k,j),..(N,N)] to
communicate among the readers
  In RReg[(k,j)] the reader is pk and the
writer is pj

  We also use n SRSW atomic registers
WReg[1,..,N] to store new values
  the writer in all these is p1
  the reader in WReg[k] is pk

16

(5) From SRSW atomic to
MRSW atomic (cont’d)

  Write(v)
  t1 := t1+1;
  for j = 1 to N

  WReg.write(v,t1);

17

(5) From SRSW atomic to
MRSW atomic (cont’d)

  Read()
  for j = 1 to N do

  (t[j],x[j]) = RReg[i,j].read();
 (t[0],x[0]) = WReg[i].read();
  (t,x) := highest(t[..],x[..]);
  for j = 1 to N do

  RReg[j,i].write(t,x);
  return(x)

Value with highest
timestamp

18

(6) From MRSW atomic to
MRMW atomic

  We use N MRSW atomic registers Reg[1,..,N];
the writer of Reg[j] is pj

   Write(v)

  for j = 1 to N do
  (t[j],x[j]) = Reg[j].read();

  (t,x) := highest(t[..],x[..]);
  t := t+1;
  Reg[i].write(t,v);

19

(6) From MRSW atomic to
MRMW atomic (cont’d)

  Read()
  for j = 1 to N do

  (t[j],x[j]) = Reg[j].read();
  (t,x) := highest(t[..],x[..]);
 return(x)

1

© R. Guerraoui

The Power of Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Atomic execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

3

Atomic execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

4

Registers

  Question 1: what objects can we implement
with registers?

  Question 2: what objects we cannot implement?

5

Wait-free implementations of
atomic objects

  An atomic object is simply defined by its
sequential specification; i.e., by how its
operations should be implemented when
there is no concurrency

  Implementations should be wait-free: every
process that invokes an operation eventually
gets a reply (unless the process crashes)

6

Counter (sequential spec)
  A counter has two operations inc() and
read() and maintains an integer x init to 0

  read():
  return(x)

  inc():
  x := x + 1;
  return(ok)

7

Naive implementation
  The processes share one register Reg
  read():

  return(Reg.read())
  inc():

  temp:= Reg.read()+1;
  Reg.write(temp);
  return(ok)

8

Atomic execution?

p1

p2

p3

 inc() - ok

read() - 1

 inc() - ok

9

Atomic implementation
  The processes share an array of registers
Reg[1,..,n]

  inc():

  Reg[i].write(Reg[i].read() +1);
  return(ok)

10

Atomic implementation

  read():

  sum := 0;
  for j = 1 to n do

  sum := sum + Reg[j].read();
 return(sum)

11

Atomic execution?

p1

p2

p3

 inc() - ok

read() - 2

 inc() - ok

12

Snapshot (sequential spec)
  A snapshot has operations update() and
scan() and maintains an array x of size n

  scan():

  return(x)
  update(i,v):

  x[i] := v;
  return(ok)

13

Very naive implementation
  Each process maintains an array of integer
variables x init to [0,..,0]

  scan():

 return(x)
  update(i,v):

  x[i] := v;
  return(ok)

14

Atomic execution?

p1

p2

p3

 update(1,1) - ok

collect() - [0,0,0]

15

Less naive implementation
  The processes share one array of N registers
Reg[1,..,N]
  scan():

  for j = 1 to N do
  x[j] := Reg[j].read();

 return(x)
  update(i,v):

  Reg[i].write(v); return(ok)

16

Atomic execution?

p1

p2

p3

 update(1,1) - ok

collect() - [1,0,0]

17

Atomic execution?

p1

p2

p3

 update(1,1) - ok

scan() - [1,0,2]

 update(3,2) - ok

18

Atomic execution?

p1

p2

p3

 scan() - [0,0,10]

update(2,1) - ok

 update(3,10) - ok

19

Non-atomic vs
atomic snapshot

  What we implement here is some kind of
regular snapshot:

  A scan returns, for every index of the
snapshot, the last written values or the
value of any concurrent update

  We call it collect

20

Key idea for atomicity

  To scan, a process keeps reading the entire
snapshot (i.e., it collect), until two results
are the same

  This means that the snapshot did not change,
and it is safe to return without violating
atomicity

21

Same value vs. Same timestamp

p1

p2

p3

scan() - [0,0,2]

collect()-[0,0,2]

update(2,0)

collect()-[0,0,2]

update(2,1)

update(3,2)

update(2,0)

update(2,1)

update(3,2)

update(3,0)

22

Enforcing atomicity
  The processes share one array of N registers
Reg[1,..,N]; each contains a value and a
timestamp
  We use the following operation for modularity
  collect():

  for j = 1 to N do
  x[j] := Reg[j].read();

 return(x)

23

Enforcing atomicity (cont’d)
  scan():

  temp1 := self.collect();
  while(true) do

 temp2 := self.collect();
 if (temp1 = temp2) then

  return (temp1.val)
 temp1 := temp2;

  update(i,v):
  ts := ts + 1;
  Reg[i].write(v,ts);
  return(ok)

24

Wait-freedom?

p1

p2

p3

 scan() -
…

collect()-[0,0,10]

 update(3,10) - ok

update(2,1) - ok

collect()-[0,1,10]

 update(2,3) - ok

25

Key idea for atomicity
& wait-freedom

  The processes share an array of registers
Reg[1,..,N] that contains each:
  a value,
  a timestamp, and
  a copy of the entire array of values

26

Key idea for atomicity
& wait-freedom (cont’d)

  To scan, a process keeps collecting and
returns a collect if it did not change, or some
collect returned by a concurrent scan
  Timestamps are used to check if the
collect changes or if a scan has been taken
in the meantime

•  To update, a process scans and writes the
value, the new timestamp and the result of
the scan

27

Snapshot implementation
Every process keeps a local timestamp ts

  update(i,v):

  ts := ts + 1;
  Reg[i].write(v,ts,self.scan());
  return(ok)

28

Snapshot implementation

  scan():
  t1 := self.collect(); t2:= t1
  while(true) do

  t3:= self.collect();
  if (t3 = t2) then return (t3);

  for j = 1 to N do
  if(t3[j,2] ≥ t1[j,2]+2) then

  return (t3[j,3])
  t2 := t3

Return the
first value in
each cell in t3

29

Possible execution?

p1

p2

p3

 scan() - [0,0,3]

 update(3,2)-ok update(3,1)-ok

 update(3,3)-ok

1

© R. Guerraoui

The Limitations
of Registers

R. Guerraoui
Distributed Programming Laboratory

2

Registers

•  Question 1: what objects can we implement
with registers? Counters and snapshots
(previous lecture)

•  Question 2: what objects we cannot
implement? (this lecture)

3

Shared memory model

Registers

P2

P3 P1

4

Shared memory model

Registers

P2

P3 P1 Counters

Snapshots

5

Shared memory model

Registers

P2

P3 P1 Counters

Snapshots Queue?

Fetch&Inc?

6

Fetch&Inc

§  A counter that contains an integer

§  Operation fetch&inc() increments the counter
and returns the new value

7

The consensus object

§  One operation propose() which returns a value.
When a propose operation returns, we say that
the process decides

§  No two processes decide differently

§  Every decided value is a proposed value

8

The consensus object

§  Proposition:
ü  Consensus can be implemented among

two processes with Fetch&Inc and registers

§  Proof (algorithm): consider two processes p0
and p1 and two registers R0 and R1 and a
Fetch&Inc C.

9

2-Consensus with Fetch&Inc
§  Uses two registers R0 and R1, and a Fetch&Inc

object C (with one fetch&inc() operation that returns
its value)

§  (NB. The value in C is initialized to 0)

§  Process pI:

§  propose(vI)
§  RI.write(vI)
§  val := C.fetch&inc()
§  if(val = 1) then

ü  return(vI)
–  else return(R{1-I}.read())

10

Impossibility [FLP85,LA87]

§  Proposition: there is no asynchronous
deterministic algorithm that implements
consensus among two processes using only
registers

§  Corollary: there is no algorithm that implements
Fetch&Inc among two processes using only
registers

11

Queue

§  The queue is an object container with two

operations: enq() and deq()

§  Can we implement a (atomic wait-free) queue?

12

2-Consensus with queues
Uses two registers R0 and R1, and a queue Q
Q is initialized to {winner, loser}

Process pI:

 propose(vI)
 RI.write(vI)
 item := Q.dequeue()
 if item = winner return(vI)
 return(R{1-I}.read())

13

P0
W(0) Deq() -> winner Return(0)

R0 Q

P1
W(1) Deq() -> loser Return(0)

R1 Q

14

Correctness

Proof (algorithm):
§  (wait-freedom) by the assumption of a wait-free register

and a wait-free queue plus the fact that the algorithm
does not contain any wait statement

§  (validity) If pI dequeues winner, it decides on its own
proposed value. If pI dequeues loser, then the other
process pJ dequeued winner before. By the algorithm, pJ
has previously written its input value in RJ. Thus, pI
decides on pJ’s proposed value;

§  (agreement) if the two processes decide, they decide on
the value written in the same register.

15

More consensus implementations

§  A Test&Set object maintains binary values x, init to 0, and
y; it provides one operation: test&set()
ü Sequential spec:
ü  test&set() {y := x; x: = 1; return(y);}

§  A Compare&Swap object maintains a value x, init to ⊥,
and provides one operation: compare&swap(v,w);
ü Sequential spec:

●  c&s(old,new) {if x = old then x := new; return(x)}

16

2-Consensus with Test&Set
§  Uses two registers R0 and R1, and a Test&Set object T
§ 

§  Process pI:

§  propose(vI)
§  RI.write(vI)
§  val := T.test&set()
§  if(val = 0) then

ü  return(vI)
 else return(R{1-I}.read())

17

N-Consensus with C&S
§  Uses a C&S object C
§ 

§  Process pI:

§  propose(vI)
§  val := C.c&s(⊥,vI)
§  if(val = ⊥) then

ü  return(vI)
–  else return(val)

18

Impossibility [FLP85,LA87]

§  Proposition: there is no asynchronous
deterministic algorithm that implements consensus
among two processes using only registers

§  Corollary: there is no algorithm that implements a
queue (Fetch&Inc,…) among two processes using
only registers

19

Registers

•  Question 1: what objects can we implement with
registers? Counters and snapshots (previous
lecture)

•  Question 2: what objects we cannot implement?
All objects that (together with registers) can
implement consensus (this lecture)

20

Impossibility (Proof)

§  Proposition: there is no algorithm that
implements consensus among two
processes using only registers

§  Proof (by contradiction): consider two
processes p0 and p1 and any number of
registers, R1..Rk..

 Assume that a consensus algorithm A for p0
and p1 exists.

21

Elements of the model

§  A configuration is a global state of the
distributed system

§  A new configuration is obtained by executing

a step on a previous configuration: the step is
the unit of execution

22

Elements of the model

§  The adversary decides which process

executes the next step and the algorithm
deterministically decides the next
configuration based on the current one

23

What is distributed computing?
A game

24

A game between an adversary and
a set of processes

25

The adversary decides which
process goes next

The processes take steps

26

Elements of the model

§  The adversary decides which process

executes the next step and the algorithm
deterministically decides the next
configuration based on the current one

27

Elements of the model

§  Schedule: a sequence of steps represented
by process ids

§  The schedule is chosen by the system

§  An asynchronous system is one with no
constraint on the schedules: any sequence of
process ids is a schedule

28

Consensus

§  The algorithm must ensure that agreement

and validity are satisfied in every schedule

§  Every process that executes an infinite

number of steps eventually decides

29

Impossibility (elements)

§  (1) a (initial) configuration C is a set of (initial)
values of p0 and p1 together with the values of
the registers: R1..Rk,..;

§  (2) a step is an elementary action executed by
some process pI: it consists in reading or writing
a value in a register and changing pI’s state
according to the algorithm A;

§  (3) a schedule S is a sequence of steps; S(C)
denotes the configuration that results from
applying S to C.

30

Impossibility (elements)

§  Consider u to be 0 or 1; a configuration C is u-
valent if, starting from C, no matter how the
processes behave, no decision other than u is
possible

§  We say that the configuration is univalent.
Otherwise, the configuration is called bivalent

31

P0(0)
Return(0)

P1(0)
Return(0)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)

32

P0(1)
Return(1)

P1(1)
Return(1)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)

33

P0(1)
Return(1/0)

P1(0)
Return(1/0)

W(X)

RI RJ

R()-> Y

W(Z)

RK RL

W(V)

34

Impossibility (structure)

§  Lemma 1: there is at least one initial bivalent
configuration

§  Lemma 2: given any bivalent configuration C,
there is an arbitrarily long schedule S(C) that
leads to another bivalent configuration

35

The conclusion

§  Lemmas 1 and 2 imply that there is a
configuration C and an infinite schedule S such
that, for any prefix S’ of S, S’(C) is bivalent.

§  In infinite schedule S, at least one process
executes an infinite number of steps and does not
decide

§  A contradiction with the assumption that A
implements consensus.

36

Lemma 1

The initial configuration C(0,1) is bivalent

Proof: consider C(0,0) and p1 not taking any step: p0

decides 0; p0 cannot distinguish C(0,0) from C(0,1)
and can hence decides 0 starting from C(0,1);
similarly, if we consider C(1,1) and p0 not taking any
step, p1 eventually decides 1; p1 cannot distinguish
C(1,1) from C(0,1) and can hence decides 1 starting
from C(0,1). Hence the bivalency.

37

Lemma 2

Given any bivalent configuration C, there is an
arbitrarily long schedule S such that S(C) is
bivalent

Proof (by contradiction): let S be the schedule with
the maximal length such as D= S(C) is bivalent;
p0(D) and p1(D) are both univalent: one of them
is 0-valent (say p0(D)) and the other is 1-valent
(say p1(D))

38

Lemma 2

§  Proof (cont’d): To go from D to p0(D) (vs p1(D))
p0 (vs p1) accesses a register; the register must
be the same in both cases; otherwise p1(p0(D)) is
the same as p0(p1(D)): in contradiction with the
very fact that p0(D) is 0-valent whereas p1(D) is
1-valent

39

Lemma 2

§  Proof (cont’d): To go from D to p0(D), p0 cannot read R;
otherwise R has the same state in D and in p0(D) ; in this
case, the registers and p1 have the same state in
p1(p0(D)) and p1(D); if p1 is the only one executing steps,
then p1 eventually decides 1 in both cases: a
contradiction with the fact that p0(D) is 0-valent; the same
argument applies to show that p1 cannot read R to go
from D to p1(D)

 Thus both p0 and p1 write in R to go from D to p0(D)
(resp., p1(D)). But then p0(p1(D))= p0(D) (resp.
p1(p0(D))= p1(D)) --- a contradiction.

40

The conclusion (bis)

Lemmas 1 and 2 imply that there is a configuration
C and an infinite schedule S such that, for any
prefix S’ of S, S’(C) is bivalent.

In infinite schedule S, at least one process executes

an infinite number of steps and does not decide

A contradiction with the assumption that A

implements consensus.

