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AMD Opteron (4 cores) 
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SUN’s Niagara CPU2 (8 cores) 
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Principles of an architecture 

 Two fundamental components that fall apart: 
processors and memory 
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Simple view 

Memory 

Bus 

Processor 
+ Cache 



6 

Shared object 

Concurrent processes  
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public class Counter 
 
private int c = 0; 
 
public long getAndIncrement()  
{  
return c++;   
}  
 

Counter 
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Locked object 

Locking (mutual exclusion) 
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public class SynchronizedCounter { 
    private int c = 0; 
    public synchronized void increment() { 
        c++; 
    } 
    public synchronized void getAndincrement()  
{ 
        return c++;  
    } 
    public synchronized int value() { 
        return c; 
    } 
} 

Implicit use of a lock 
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Locking with compare&swap() 

§  A Compare&Swap object maintains a value x, init 
to ⊥, and y; 

 
§   It provides one operation: c&s(old,new);  
 

ü Sequential spec:    
●   c&s(old,new)  
{y := x; if x = old then x := new; return(y)}  
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lock() {  
repeat until  
unlocked = this.c&s(unlocked,locked)   
}  
 
unlock() { 
         this.c&s(locked,unlocked)  
     } 

Locking with compare&swap()  
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Locking with test&set()  

§  A Test&Set object maintains binary values x, init 
to 0, and y;  

§  It provides one operation: t&s() 
 

ü Sequential spec:    
ü          t&s() {y := x; x: = 1; return(y);}   
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lock() {  
repeat until (0 = this.t&s());   
}  
 
unlock() { 
         this.setState(0);  
     } 

Locking with test&set()  



14 

lock() {  
while (true) 
 { 
 repeat until (0 = this.getState()); 
 if 0 = (this.t&s()) return(true); 
 }  
}  
 
unlock() { 
         this.setState(0);  
     } 

Locking with test&set()  
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 Lock l = ...;  
     l.lock(); 
     try { 
// access the resource protected by this lock 
     } finally { 
         l.unlock(); 
     } 

Explicit use of a lock 



16 

Locking (mutual exclusion) 

 Difficult: 50% of the bugs reported in 
Java come from the mis-use of 
« synchronized »  
 Fragile: a process holding a lock 
prevents all others from progressing 
 Slow: the act of locking itself impacts 
performance 
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Locked object 

One process at a time 
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Processes are asynchronous 

 Page faults 
 Pre-emptions 
 Failures 
 Cache misses, …   
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Processes are asynchronous 

 
 A cache miss can delay a process by ten 
instructions 
 A page fault by few millions 
 An os preemption by hundreds of millions…  
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Coarse grained locks => slow 

Fine grained locks => errors 
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Processes are asynchronous 

 Page faults, pre-emptions, failures, 
cache misses, …   

 A process can be delayed by millions of 
instructions …  
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Alternative to locking? 
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Wait-free atomic objects 

 Wait-freedom: every process that invokes 
an operation eventually returns from the 
invocation (robust … unlike locking) 

 Atomicity: every operation appears to 
execute instantaneously (as if the object 
was locked…) 
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In short 

 The fundamental question is how to  
  wait-free implement high-level  
  atomic objects out of primitive base objects 
 



25 Shared object 

Concurrent processes  
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Processes 

§  We assume a finite set of processes 
 
§  Processes are denoted by p1,..pN or p, q, r 
 
§  Processes have unique identities and know 

each other (unless explicitly stated otherwise) 



27 

Processes 

 Processes are sequential units of 
computations 

 

 Unless explicitly stated otherwise, we make 
no assumption on process (relative) speeds 
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Processes 

p1 

p2 

p3 
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Processes 
 A process either executes the algorithm 
assigned to it or crashes 

 A process that crashes does not recover (in 
the context of the considered computation)  

 A process that does not crash in a given 
execution (computation or run) is called 
correct (in that execution) 
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Processes 

p1 

p2 

p3 

crash 
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On objects and processes 
 

 Processes execute local computation or 
access shared objects through their 
operations 

 

 Every operation is expected to return a reply 
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Processes 

p1 

p2 

p3 

operation 

operation 

operation 
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On objects and processes 

 Sequentiality means here that, after invoking 
an operation op1 on some object O1, a 
process does not invoke a new operation (on 
the same or on some other object) until it 
receives the reply for op1 

 

 Remark. Sometimes we talk about operations 
when we should be talking about operation 
invocations 
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Processes 

p1 

p2 

p3 

operation 

operation 

operation 
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Atomicity 

 Every operation appears to execute at some 
indivisible point in time (called linearization 
point) between the invocation and reply time 
events 
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Atomicity 

p1 

p2 

p3 

operation 

operation 

operation 
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Atomicity 

p1 

p2 

p3 

operation 

operation 

operation 
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Atomicity (the crash case) 

p1 

p2 

p3 

operation 

operation 

operation 

p2 

crash 
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Atomicity (the crash case) 

p1 

p2 

p3 

operation 

operation 

operation 

p2 
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Atomicity (the crash case) 

p1 

p2 

p3 

operation 

operation 

p2 
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Wait-freedom 

 Any correct process that invokes an 
operation eventually gets a reply, no matter 
what happens to the other processes (crash 
or very slow) 
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Wait-freedom 

p1 

p2 

p3 

operation 
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Wait-freedom 
 Wait-freedom conveys the robustness of the 
implementation 

 With a wait-free implementation, a process 
gets replies despite the crash of the n-1 
other processes  

 Note that this precludes implementations 
based on locks (mutual exclusion) 
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Wait-freedom 

p1 

p2 

p3 

crash 

operation 

crash 
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Example 1 

 The reader/writer synchronization problem 
corresponds to the register object 

 Basically, the processes need to read or 
write a shared data structure such that the 
value read by a process at a time t, is the 
last value written before t 
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Register 

 A register has two operations: read() and 
write() 

 

 We assume that a register contains an integer 
for presentation simplicity, i.e., the value stored 
in the register is an integer, denoted by x 
(initially 0) 
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Sequential specification 

 Sequential specification 

  read()  

  return(x) 

  write(v) 

  x <- v;  

  return(ok) 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 2 

 write(2) - ok 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 2 

 write(2) - ok 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 write(2) - ok 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 write(2) - ok 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 1 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 0 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 0 

 read() - 0 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 0 

 read() - 0 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 0 

 read() - 0 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 0 
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Atomicity? 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 1 
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Example 2 

 The producer/consumer synchronization 
problem corresponds to the queue object 

 Producer processes create items that need 
to be used by consumer processes 

 An item cannot be consumed by two 
processes and the first item produced is 
the first consumed 
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Queue 

 A queue has two operations: 
enqueue() and dequeue() 

 

 We assume that a queue internally 
maintains a list x  which exports 
operation appends() to put an item at the 
end of the list and remove() to remove 
an element from the head of the list 
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Sequential specification 

 dequeue() 

   if(x=0) then return(nil); 

   else return(x.remove()) 

 enqueue(v)  

  x.append(v); 

  return(ok) 
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Atomicity? 

p1 

p2 

p3 

 enq(x) - ok 

deq() - y 

 deq() - x 

 enq(y) - ok 
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Atomicity? 

p1 

p2 

p3 

 enq(x) - ok 

deq() - y 

 deq() - x 

 enq(y) - ok 
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Atomicity? 

p1 

p2 

p3 

 enq(x) - ok 

deq() - y 

 enq(y) - ok 
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Atomicity? 

p1 

p2 

p3 

 enq(x) - ok 

deq() - x 

 enq(y) - ok 
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Register 

 A register has two operations: read() 
and write() 

 

    

 

 Sequential specification 

  read()  

  return(x) 

  write(v) 

  x <- v; return(ok) 
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Simplifications 

  We assume that registers contain only 
integers 

  Unless explicitely stated otherwise, registers 
are initially supposed to contain 0 
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Space of registers 

  Dimension 1: binary (boolean) – multivalued 

  Dimension 2:   
  SRSW  (single reader, single writer)  
  MRSW (multiple reader, single writer) 
  MRMW (multiple reader, multiple writer) 

  Dimension 3:  safe – regular – atomic  



5 

Safe execution 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 25 
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Regular execution 

p1 

p2 

p3 

 write(1) - ok 

read() - 0 

 read() - 1 
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Atomic execution 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 0 
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2 decades of hard work 

  Theorem: A multivalued MRMW atomic 
register can be implemented with binary 
SRSW safe register  
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Algorithms 
 
  The process executing the code is implicitely 
assumed to be pi  

  We assume a system of N processes 

  NB. We distinguish base and high-level registers  
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Conventions 
  The operations to be implemented are denoted 
Read() and Write()  
  Those of the base registers are denoted read() 
and write()    

  We omit the return(ok) instruction at the end 
of Write() implementations 
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(1) From (binary) SRSW safe 
to (binary) MRSW  safe  

  Read() 
  return (Reg[i].read()); 

 

  We use an array of SRSW registers  
   Reg[1,..,N]   
 

  Write(v) 
 for j = 1  to N  

  Reg[j].write(v); 
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(2) From binary MRSW safe to  
binary MRSW regular 

  We use one MRSW safe register 
  Read() 

  return(Reg.read()); 
 

 
•  Write(v) 

  if old ≠ v then  
  Reg.write(v); 
  old := v; 
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(3) From binary to M-Valued 
MRSW regular 

  Read() 
  for j = 0 to M  

  if Reg[j].read() = 1 then return(j)       
 

  We use an array of MRSW registers 
Reg[0,1,..,M] init to [1,0,..,0]  

 

  Write(v) 
  Reg[v].write(1); 
  for j=v-1 downto 0  

  Reg[j].write(0); 
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(4) From SRSW regular to  
SRSW atomic 

  Read() 
  (t’,x’) = Reg.read(); 
  if t’ > t  then t:=t’; x:=x’; 
  return(x)       

 

  We use one SRSW register  Reg and two local 
variables t and x  

 

  Write(v) 
  t := t+1; 
  Reg.write(v,t); 
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(5) From SRSW atomic to  
MRSW atomic 

  We use N*N SRSW atomic registers 
RReg[(1,1),(1,2),..,(k,j),..(N,N)] to 
communicate among the readers 
  In RReg[(k,j)] the reader is pk and the 
writer is pj 

  
  We also use n SRSW atomic registers 
WReg[1,..,N] to store new values 
  the writer in all these is p1 
  the reader in WReg[k] is pk 
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(5) From SRSW atomic to  
MRSW atomic (cont’d) 

  Write(v) 
  t1 := t1+1; 
  for j = 1 to N  

  WReg.write(v,t1); 
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(5) From SRSW atomic to  
MRSW atomic (cont’d) 

  Read() 
  for j = 1 to N do 

  (t[j],x[j]) = RReg[i,j].read(); 
 (t[0],x[0]) = WReg[i].read(); 
  (t,x) := highest(t[..],x[..]); 
  for j = 1 to N do  

  RReg[j,i].write(t,x); 
  return(x)       

 

Value with highest 
timestamp 
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(6) From MRSW atomic to  
MRMW atomic 

  We use N MRSW atomic registers Reg[1,..,N]; 
the writer of Reg[j] is pj 

 
   Write(v) 

  for j = 1 to N do 
  (t[j],x[j]) = Reg[j].read(); 

  (t,x) := highest(t[..],x[..]); 
  t := t+1; 
  Reg[i].write(t,v); 
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(6) From MRSW atomic to  
MRMW atomic (cont’d) 

  Read() 
  for j = 1 to N do 

  (t[j],x[j]) = Reg[j].read(); 
  (t,x) := highest(t[..],x[..]); 
 return(x)       
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Atomic execution 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 1 
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Atomic execution 

p1 

p2 

p3 

 write(1) - ok 

read() - 1 

 read() - 0 
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Registers 

  Question 1: what objects can we implement 
with registers?   

  Question 2: what objects we cannot implement?   



5 

Wait-free implementations of 
atomic objects 

  An atomic object is simply defined by its 
sequential specification; i.e., by how its 
operations should be implemented when 
there is no concurrency 

  Implementations should be wait-free: every 
process that invokes an operation eventually 
gets a reply (unless the process crashes) 
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Counter (sequential spec) 
  A counter has two operations inc() and 
read() and maintains an integer x init to 0 

  read(): 
  return(x)  

  inc(): 
  x := x + 1; 
  return(ok) 
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Naive implementation 
  The processes share one register Reg  
   read(): 

  return(Reg.read()) 
   inc(): 

  temp:= Reg.read()+1; 
  Reg.write(temp); 
  return(ok) 
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Atomic execution? 

p1 

p2 

p3 

 inc() - ok 

read() - 1 

 inc() - ok 
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Atomic implementation 
  The processes share an array of registers 
Reg[1,..,n]  

 
  inc(): 

  Reg[i].write(Reg[i].read() +1); 
  return(ok) 
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Atomic implementation 
 
  read(): 

  sum := 0; 
  for j = 1 to n do 

  sum := sum + Reg[j].read(); 
 return(sum) 
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Atomic execution? 

p1 

p2 

p3 

 inc() - ok 

read() - 2 

 inc() - ok 
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Snapshot (sequential spec)  
  A snapshot has operations update() and 
scan() and maintains an array x of size n 

 
  scan(): 

  return(x)  
  update(i,v): 

  x[i] := v; 
  return(ok) 
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Very naive implementation  
  Each process maintains an array of integer 
variables x init to [0,..,0] 

 
  scan(): 

 return(x)  
  update(i,v): 

  x[i] := v;  
  return(ok) 
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Atomic execution? 

p1 

p2 

p3 

 update(1,1) - ok 

collect() - [0,0,0] 
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Less naive implementation  
  The processes share one array of N registers 
Reg[1,..,N] 
  scan(): 

  for j = 1 to N do  
  x[j] := Reg[j].read(); 

 return(x)  
  update(i,v): 

  Reg[i].write(v); return(ok) 
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Atomic execution? 

p1 

p2 

p3 

 update(1,1) - ok 

collect() - [1,0,0] 
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Atomic execution? 

p1 

p2 

p3 

 update(1,1) - ok 

scan() - [1,0,2] 

 update(3,2) - ok 
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Atomic execution? 

p1 

p2 

p3 

 scan()      -       [0,0,10] 

update(2,1) - ok 
 

 update(3,10) - ok 
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Non-atomic vs  
atomic snapshot  

  What we implement here is some kind of 
regular snapshot: 

  
  A scan returns, for every index of the 
snapshot, the last written values or the 
value of any concurrent update 

 
  We call it collect  
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Key idea for atomicity  

  To scan, a process keeps reading the entire 
snapshot (i.e., it collect), until two results 
are the same 

 
  This means that the snapshot did not change, 
and it is safe to return without violating 
atomicity 
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Same value vs. Same timestamp 

p1 

p2 

p3 

scan()          -             [0,0,2]  

collect()-[0,0,2] 
 

 

update(2,0) 
 

collect()-[0,0,2] 
 

 

update(2,1) 
 

update(3,2) 
 

update(2,0) 
 

update(2,1) 
 

update(3,2) 
 

update(3,0) 
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Enforcing atomicity 
  The processes share one array of N registers 
Reg[1,..,N]; each contains a value and a 
timestamp 
  We use the following operation for modularity 
  collect(): 

  for j = 1 to N do  
  x[j] := Reg[j].read(); 

 return(x)  
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Enforcing atomicity (cont’d)  
  scan(): 

   temp1 := self.collect(); 
   while(true) do 

 temp2 := self.collect();  
 if (temp1 = temp2) then  

  return (temp1.val) 
 temp1 := temp2; 

  update(i,v): 
  ts := ts + 1; 
   Reg[i].write(v,ts);  
   return(ok) 
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Wait-freedom? 

p1 

p2 

p3 

 scan()          -                
… 

collect()-[0,0,10] 
 

 

 update(3,10) - ok 

update(2,1) - ok 
 

collect()-[0,1,10] 
 

 

 update(2,3) - ok 
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Key idea for atomicity  
& wait-freedom  

  The processes share an array of registers 
Reg[1,..,N]  that contains each: 
   a value,  
   a timestamp, and 
   a copy of the entire array of values 
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Key idea for atomicity  
& wait-freedom (cont’d) 

  To scan, a process keeps collecting and 
returns a collect if it did not change, or some 
collect returned by a concurrent scan  
  Timestamps are used to check if the 
collect changes or if a scan has been taken 
in the meantime 

•  To update, a process scans and writes the 
value, the new timestamp and the result of 
the scan 
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Snapshot implementation  
Every process keeps a local timestamp ts 
 
  update(i,v): 

  ts := ts + 1; 
  Reg[i].write(v,ts,self.scan()); 
  return(ok) 
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Snapshot implementation  

  scan(): 
  t1 := self.collect(); t2:= t1 
  while(true) do 

  t3:= self.collect(); 
  if (t3 = t2) then return (t3); 

  for j = 1 to N do 
  if(t3[j,2] ≥ t1[j,2]+2) then  

  return (t3[j,3]) 
  t2 := t3 

Return the 
first value in 
each cell in t3 
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Possible execution? 

p1 

p2 

p3 

 scan()          -              [0,0,3] 

 update(3,2)-ok update(3,1)-ok 
 

 update(3,3)-ok 
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Registers 

•  Question 1: what objects can we implement 
with registers? Counters and snapshots 
(previous lecture) 

•  Question 2: what objects we cannot 
implement? (this lecture) 
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Shared memory model 

Registers 
 

P2 

P3 P1 
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Shared memory model 

Registers 
 

P2 

P3 P1 Counters 

Snapshots 
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Shared memory model 

Registers 
 

P2 

P3 P1 Counters 

Snapshots Queue? 

Fetch&Inc? 
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Fetch&Inc 

 
§  A counter that contains an integer   

§  Operation fetch&inc() increments the counter 
and returns the new value  
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The consensus object 

§  One operation propose() which returns a value. 
When a propose operation returns, we say that 
the process decides 

§  No two processes decide differently 

§  Every decided value is a proposed value 
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The consensus object 

§  Proposition:  
ü  Consensus can be implemented  among 

two processes with Fetch&Inc and registers 

§  Proof (algorithm): consider two processes p0 
and p1 and two registers R0 and R1 and a 
Fetch&Inc C. 
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2-Consensus with Fetch&Inc   
§  Uses two registers R0 and R1, and a Fetch&Inc 

object C  (with one fetch&inc() operation that returns 
its value) 

§  (NB. The value in C is initialized to 0) 

§  Process pI: 

§    propose(vI) 
§     RI.write(vI) 
§     val := C.fetch&inc() 
§     if(val = 1) then  

ü      return(vI) 
–      else return(R{1-I}.read()) 
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Impossibility [FLP85,LA87] 

§  Proposition: there is no asynchronous 
deterministic algorithm that implements 
consensus among two processes using only 
registers 

§  Corollary: there is no algorithm that implements 
Fetch&Inc among two processes using only  
registers 
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Queue 

 
§  The queue is an object container with two 

operations: enq() and deq()    

§  Can we implement a (atomic wait-free) queue? 
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2-Consensus with queues   
Uses two registers R0 and R1, and a queue Q   
Q is initialized to {winner, loser} 
 
Process pI: 
 

  propose(vI) 
   RI.write(vI) 
   item := Q.dequeue() 
   if item = winner return(vI) 
   return(R{1-I}.read()) 
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P0 
W(0) Deq() -> winner Return(0) 

R0 Q 

P1 
W(1) Deq() -> loser Return(0) 

R1 Q 
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Correctness 

Proof (algorithm): 
§  (wait-freedom) by the assumption of a wait-free register 

and a wait-free queue plus the fact that the algorithm 
does not contain any wait statement 

§  (validity) If pI dequeues winner, it decides on its own 
proposed value. If pI dequeues loser, then the other 
process pJ dequeued winner before. By the algorithm, pJ 
has previously written its input value in RJ. Thus, pI 
decides on pJ’s proposed value;  

§  (agreement) if the two processes decide, they decide on 
the value written in the same register. 
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More consensus implementations 

§  A Test&Set object maintains binary values x, init to 0, and 
y; it provides one operation: test&set() 
ü Sequential spec:    
ü          test&set() {y := x; x: = 1; return(y);}   

§  A Compare&Swap object maintains a value x, init to ⊥, 
and provides one operation: compare&swap(v,w);  
ü Sequential spec:    

●   c&s(old,new) {if x = old then x := new; return(x)}  
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2-Consensus with Test&Set   
§  Uses two registers R0 and R1, and a Test&Set object T   
§    
 
§  Process pI: 

§    propose(vI) 
§     RI.write(vI) 
§     val := T.test&set() 
§     if(val = 0) then  

ü       return(vI) 
   else return(R{1-I}.read()) 
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N-Consensus with C&S   
§  Uses a C&S object C   
§    

§  Process pI: 

§    propose(vI) 
§     val :=  C.c&s(⊥,vI) 
§     if(val = ⊥) then  

ü       return(vI) 
–    else return(val) 
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Impossibility [FLP85,LA87] 

§  Proposition: there is no asynchronous 
deterministic algorithm that implements consensus 
among two processes using only registers 

§  Corollary: there is no algorithm that implements a 
queue (Fetch&Inc,…) among two processes using 
only  registers 
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Registers 

•  Question 1: what objects can we implement with 
registers? Counters and snapshots (previous 
lecture) 

•  Question 2: what objects we cannot implement? 
All objects that (together with registers) can 
implement consensus (this lecture) 
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Impossibility (Proof) 

§  Proposition: there is no algorithm that 
implements consensus among two 
processes using only registers 

§  Proof (by contradiction): consider two 
processes p0 and p1 and any number of 
registers, R1..Rk.. 

  Assume that a consensus algorithm A for p0 
and p1 exists. 
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Elements of the model 

§  A configuration is a global state of the 
distributed system 

 
§  A new configuration is obtained by executing 

a step on a previous configuration: the step is 
the unit of execution    
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Elements of the model 

    
 
§  The adversary decides which process 

executes the next step and the algorithm 
deterministically decides the next 
configuration based on the current one 
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What is distributed computing?  
A game 
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A game between an adversary and  
a set of processes 
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The adversary decides which 
process goes next 

The processes take steps 
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Elements of the model 

    
 
§  The adversary decides which process 

executes the next step and the algorithm 
deterministically decides the next 
configuration based on the current one 



27 

Elements of the model 

§  Schedule:  a sequence of steps represented 
by process ids 

§  The schedule is chosen by the system 

§  An asynchronous system is one with no 
constraint on the schedules: any sequence of 
process ids is a schedule  
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Consensus 

 
§  The algorithm must ensure that agreement 

and validity are satisfied in every schedule  
 
§  Every process that executes an infinite 

number of steps eventually decides 
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Impossibility (elements) 

§  (1) a (initial) configuration C is a set of (initial) 
values of p0 and p1 together with the values of 
the registers: R1..Rk,..;  

§  (2) a step is an elementary action executed by 
some process pI: it consists in reading or writing 
a value in a register and changing pI’s state 
according to the algorithm A;  

§  (3) a schedule S is a sequence of steps; S(C) 
denotes the configuration that results from 
applying S to C.  
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Impossibility (elements) 

§  Consider u to be 0 or 1; a configuration C is u-
valent if, starting from C, no matter how the 
processes behave, no decision other than u is 
possible 

§  We say that the configuration is univalent. 
Otherwise, the configuration is called bivalent 
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P0(0) 
Return(0) 

P1(0) 
Return(0) 

W(X) 

RI RJ 

R()-> Y 

W(Z) 

RK RL 

W(V) 
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P0(1) 
Return(1) 

P1(1) 
Return(1) 

W(X) 

RI RJ 

R()-> Y 

W(Z) 

RK RL 

W(V) 
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P0(1) 
Return(1/0) 

P1(0) 
Return(1/0) 

W(X) 

RI RJ 

R()-> Y 

W(Z) 

RK RL 

W(V) 
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Impossibility (structure) 

§  Lemma 1: there is at least one initial bivalent 
configuration 

§  Lemma 2: given any bivalent configuration C, 
there is an arbitrarily long schedule S(C) that 
leads to another bivalent configuration 
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The conclusion 

§  Lemmas 1 and 2 imply that there is a 
configuration C and an infinite schedule S such 
that, for any prefix S’  of S,   S’(C) is bivalent.  

§  In infinite schedule S, at least one process 
executes an infinite number of steps and does not 
decide   

§  A contradiction with the assumption that A 
implements consensus.  
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Lemma 1 

The initial configuration C(0,1) is bivalent 
 
Proof: consider C(0,0) and p1 not taking any step: p0 

decides 0; p0 cannot distinguish C(0,0) from C(0,1) 
and can hence decides 0 starting from C(0,1); 
similarly, if we consider C(1,1) and p0 not taking any 
step, p1 eventually decides 1; p1 cannot distinguish 
C(1,1) from C(0,1) and can hence decides 1 starting 
from C(0,1). Hence the bivalency. 



37 

Lemma 2 

Given any bivalent configuration C, there is an 
arbitrarily long schedule S such that S(C) is 
bivalent 

Proof (by contradiction): let S be the schedule with 
the maximal length such as D= S(C) is bivalent; 
p0(D) and p1(D) are both univalent: one of them 
is 0-valent (say p0(D)) and the other is 1-valent 
(say p1(D))  
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Lemma 2 

§  Proof (cont’d): To go from D to p0(D) (vs p1(D)) 
p0 (vs p1) accesses a register; the register must 
be the same in both cases; otherwise p1(p0(D)) is 
the same as p0(p1(D)): in contradiction with the 
very fact that p0(D) is 0-valent whereas p1(D) is 
1-valent  
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Lemma 2 

§  Proof (cont’d): To go from D to p0(D), p0 cannot read R; 
otherwise R has the same state in D and in p0(D) ; in this 
case, the registers and p1 have the same state in 
p1(p0(D)) and p1(D); if p1 is the only one executing steps, 
then p1 eventually decides 1 in both cases: a 
contradiction with the fact that p0(D) is 0-valent; the same 
argument applies to show that p1 cannot read R to go 
from D to p1(D) 

 Thus both p0 and p1 write in R to go from D to p0(D) 
(resp., p1(D)). But then p0(p1(D))= p0(D) (resp. 
p1(p0(D))= p1(D)) --- a contradiction.   
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The conclusion (bis) 

Lemmas 1 and 2 imply that there is a configuration 
C and an infinite schedule S such that, for any 
prefix S’  of S,   S’(C) is bivalent.  

 
In infinite schedule S, at least one process executes 

an infinite number of steps and does not decide   
 
A contradiction with the assumption that A 

implements consensus.  


