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Moore’s Law 

Clock speed 
flattening 

sharply 

Transistor 
count still 

rising 



Moore’s Law (in practice) 
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Nearly Extinct: the Uniprocesor 

memory 

cpu 
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Endangered:  
The Shared Memory Multiprocessor 

(SMP) 

cache 

Bus Bus 

shared memory 

cache cache 
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The New Boss:  
The Multicore Processor 

(CMP)  

cache 
Bus Bus 

shared memory 

cache cache All on the  
same chip 

Sun 
T2000 

Niagara 
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Traditional Scaling Process 

User code 

Traditional 
Uniprocessor  

Speedup 
1.8x 

7x 
3.6x 

Time: Moore’s law 



Ideal Scaling Process 
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User code 

Multicore 

Speedup 1.8x 

7x 
3.6x 

Unfortunately, not so simple… 



Actual Scaling Process 
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1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Parallelization and Synchronization  
require great care…  
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Amdahl’s Law 

Speedup= 
1-thread execution time 

n-thread execution time 
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Amdahl’s Law 

Speedup= 
​1/1+𝑝+ ​𝑝/𝑛   
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Amdahl’s Law 

Speedup= 
​1/1+𝑝+ ​𝑝/𝑛   

parallel 
fraction 
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Amdahl’s Law 

Speedup= 
​1/1+𝑝+ ​𝑝/𝑛   

parallel 
fraction 

Number of 
threads 
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Amdahl’s Law 

Speedup= 
​1/1+𝑝+ ​𝑝/𝑛   

parallel 
fraction 

Number of 
threads 

sequential 
fraction 



Bad synchronization ruins everything 

Amdal’s Law 
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

60% concurrent 

40% sequential 

How close to a 10-fold speedup? 
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

60% concurrent 

40% sequential 

How close to a 10-fold speedup? 

​1/1−0.6− ​0.6/10   = 2.17  
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

80% concurrent 

20% sequential 

How close to a 10-fold speedup? 
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

80% concurrent 

20% sequential 

How close to a 10-fold speedup? 

​1/1−0.8− ​0.8/10   = 3.57  
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

90% concurrent 

10% sequential 

How close to a 10-fold speedup? 
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

80% concurrent 

20% sequential 

How close to a 10-fold speedup? 

​1/1−0.9− ​0.9/10   = 5.26  
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

99% concurrent 

01% sequential 

How close to a 10-fold speedup? 
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Example 

Art of Multiprocessor Programming 

You buy a 10-core machine … 

Your application is: 

80% concurrent 

20% sequential 

How close to a 10-fold speedup? 

​1/1−0.99− ​0.99/10   = 9.17  



Art of 

Diminishing Returns 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

speedup 

This course is about the parts that 
are hard to make concurrent … 

but still have a big influence on speedup! 
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Locking 

Art of Multiprocessor 
Programming 
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Coarse-Grained Locking 

Art of Multiprocessor 
Programming 

Easily made correct … 
But not scalable. 
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Fine-Grained Locking 

Art of Multiprocessor 
Programming 

Can be very tricky … 
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Locks are not Robust 

Art of Multiprocessor 
Programming 

If a thread holding 
a lock is delayed … 

No one else can make 
progress 



Locking Relies on Conventions 

/*  
 * When a locked buffer is visible to the I/O layer 
 * BH_Launder is set. This means before unlocking 
 * we must clear BH_Launder,mb() on alpha and then 
 * clear BH_Lock, so no reader can see BH_Launder set 
 * on an unlocked buffer and then risk to deadlock.  
 */  

Art of Multiprocessor 
Programming 

Relation between … 

Lock data and object data … 

Exists only in programmer’s mind 

Actual comment 
from Linux Kernel 

(hat tip: Bradley Kuszmaul) 
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Simple Problems are hard 

enq(x) enq(y) double-ended queue 

No interference if 
ends “far apart” 

Interference OK if 
queue is small 

Clean solution is 
publishable result: 

[Michael & Scott PODC 97] 
Art of Multiprocessor 

Programming 
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Locks Not Composable 

Transfer item from one 
queue to another 

Must be atomic : 
No duplicate or missing items 
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Locks Not Composable 

Lock source 

Lock target 

Unlock source 
& target 
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Locks Not Composable 

Lock source 

Lock target 

Unlock source & 
target 

Methods cannot provide 
internal synchronization 

Objects must expose 
locking protocols to clients 

Clients must devise and 
follow protocols 

Abstraction broken! 



34 

Monitor Wait and Signal 

zzz 

Empty 

buffer Yes! 

Art of Multiprocessor 
Programming 

If buffer is empty, 
  wait for item to show up 
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Wait and Signal do not Compose 

empty 

empty zzz… 

Art of Multiprocessor 
Programming 

Wait for either? 
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The Transactional Manifesto 

Much modern programming practice 
inadequate for multicore world 

Agenda 

Replace locking with a transactional API  

Design languages and libraries 

Implement efficient run-times 



Road Map 
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Transactional Memory 

Hardware Transactional Memory 

Hybrid Transactional Memory 

Software Transactional Memory 

Research Questions 



Road Map 

38 

Transactional Memory 

Hardware Transactional Memory 

Hybrid Transactional Memory 

Software Transactional Memory 

Research Questions 
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Transactions 
Block of code …. 

Atomic: appears to happen 
instantaneously 
Serializable: all appear to 
happen in one-at-a-time 

order Commit: takes effect 
(atomically) 

Abort: has no effect 
(typically restarted) 
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atomic { 
 x.remove(3); 
 y.add(3); 
} 
 
atomic { 
 y = null; 
}  

Atomic Blocks 
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atomic { 
 x.remove(3); 
 y.add(3); 
} 
 
atomic { 
 y = null; 
}  

Atomic Blocks 

No data race 
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public void LeftEnq(item x) { 
  Qnode q = new Qnode(x); 
  q.left = left; 
  left.right = q; 
  left = q; 
} 

A Double-Ended Queue 

Write sequential Code 
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public void LeftEnq(item x)  
 atomic { 
  Qnode q = new Qnode(x); 
  q.left = left; 
  left.right = q; 
  left = q; 
 } 
} 

A Double-Ended Queue 
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public void LeftEnq(item x) { 
 atomic { 
  Qnode q = new Qnode(x); 
  q.left = left; 
  left.right = q; 
  left = q; 
 } 
} 

A Double-Ended Queue 

Enclose in atomic block 
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Warning 
Not always this simple! 

Conditional waits? 

False conflicts? 

Resource limits? 

Better problems to have … 
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Composition? 
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Composition? 
public void Transfer(Queue<T> q1, q2) 
{ 
 atomic { 
  T x = q1.deq(); 
  q2.enq(x); 
 } 
} 

Trivial or what? 
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public T LeftDeq() { 
 atomic { 
  if (left == null) 
    retry; 
  … 
  
 } 
} 

Conditional Waiting 

Roll back transaction 
and restart when 

something changes 
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Composable Conditional Waiting 
atomic { 
 x = q1.deq();  
} orElse { 
 x = q2.deq(); 
} 

Run 1st method. If it retries … 
Run 2nd method. If it retries … 

Entire statement retries 



Research Questions 

Road Map 

50 

Transactional Memory 

Hardware Transactional Memory 

Hybrid Transactional Memory 

Software Transactional Memory 
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Hardware Transactional 
Memory 

Exploit standard “cache coherence” 

Detect synchronization conflicts … 

Invalidate cached copies of data. 



Standard Cache Coherence 

Bus 

cache 

memory 

cache cache 

Art of Multiprocessor Programming 
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Standard Cache Coherence 

Bus 

cache 

memory 

cache cache 
Random access memory (10s of cycles) 

Art of Multiprocessor Programming 
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Standard Cache Coherence 

cache 

memory 

cache cache 

Bus 

Shared Bus 
• Broadcast medium 
• One broadcaster at a time 
• Processors and memory all “snoop” 

Art of Multiprocessor Programming 
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Standard Cache Coherence 

Bus 

cache 

memory 

cache cache 

Per-Processor Caches 
• Small 
• Fast: 1 or 2 cycles 
• Address & state information 

Art of Multiprocessor Programming 
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Bus 

Processor Issues Load Request 

Bus 

cache 

memory 

cache cache 

data 

load x 

Art of Multiprocessor Programming 
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Bus 

Processor Issues Load Request 

Bus 

cache 

memory 

cache cache 

load x 

Art of Multiprocessor Programming 

Got it!  

data 

E 

data 
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Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

Load x 

E 

Art of Multiprocessor Programming 
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Bus 

Other Cache Responds 

memory 

cache cache 

data 

Got it 

data data 

Bus 

E S S 

Art of Multiprocessor Programming 
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S 

Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

data S 

Art of Multiprocessor Programming 
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Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

cache 

Invalidate 
x 

S S M I 

Art of Multiprocessor Programming 
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cache 

Bus 

Invalidate 

memory 

cache data 

data 
This cache acquires write permission 

Art of Multiprocessor Programming 
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cache 

Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 

This cache acquires write permission 

Art of Multiprocessor Programming 



64 

cache 

Bus 

Invalidate 

memory 

cache data 

data 

Memory provides data only if not present 
in any cache, so no need to change it now 

(expensive) 

Art of Multiprocessor Programming 
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HW Transactional Memory 

Interconnect 

caches 

memory 

read active 

T 
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Transactional Memory 
read 

active 
T T 

active 

caches 

memory 
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Transactional Memory 

active 
T T 

active committed 

caches 

memory 
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Transactional Memory 
write 

active 

committed 

T 
D caches 

memory 
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Rewind 

active 
T T 

active write aborted 

D caches 

memory 
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Transaction Commit 
At Commit point … 

No cache conflicts? We win. 

Mark transactional cache entries …. 
Was: read-only, Now: valid 

Was: modified, Now: dirty 
(will be written back) 

That’s (almost) everything! 



Road Map 
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Transactional Memory 

Hardware Transactional Memory 

Hybrid Transactional Memory 

Software Transactional Memory 

Research Questions 
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Hardware Transactional Memory (HTM) 

IBM’s Blue Gene/Q & System Z & Power8 

Intel’s Haswell TSX extensions 



if (_xbegin() == _XBEGIN_STARTED) {  
  speculative code 
  _xend() 
} else { 
  abort handler 
} 

Intel RTM 



if (_xbegin() == _XBEGIN_STARTED) {  
  speculative code 
  _xend() 
} else { 
  abort handler 
} 

Intel RTM 

start a speculative 
transaction 



if (_xbegin() == _XBEGIN_STARTED) {  
  speculative code 
  _xend() 
} else { 
  abort handler 
} 

Intel RTM 

If you see this, you are 
inside a transaction 



if (_xbegin() == _XBEGIN_STARTED) {  
  speculative code 
  _xend() 
} else { 
  abort handler 
} 

Intel RTM 

If you see anything else, 
your transaction aborted 



if (_xbegin() == _XBEGIN_STARTED) {  
  speculative code 
  _xend() 
} else { 
  abort handler 
} 

Intel RTM 

you could retry the 
transaction, or take an 

alternative path 



if (_xbegin() == _XBEGIN_STARTED) { 
  speculative code 
} else if (status & _XABORT_EXPLICIT) { 
  aborted by user code 
} else if (status & _XABORT_CONFLICT) { 
  read-write conflict 
} else if (status & _XABORT_CAPACITY) { 
  cache overflow 
} else { 
  … 
} 

Abort codes 



if (_xbegin() == _XBEGIN_STARTED) { 
  speculative code 
} else if (status & _XABORT_EXPLICIT) { 
  aborted by user code 
} else if (status & _XABORT_CONFLICT) { 
  read-write conflict 
} else if (status & _XABORT_CAPACITY) { 
  cache overflow 
} else { 
  … 
} 

Abort codes 

speculative code can call 
_xabort() 



if (_xbegin() == _XBEGIN_STARTED) { 
  speculative code 
} else if (status & _XABORT_EXPLICIT) { 
  aborted by user code 
} else if (status & _XABORT_CONFLICT) { 
  read-write conflict 
} else if (status & _XABORT_CAPACITY) { 
  cache overflow 
} else { 
  … 
} 

Abort codes 
synchronization conflict 
occurred (maybe retry) 



if (_xbegin() == _XBEGIN_STARTED) { 
  speculative code 
} else if (status & _XABORT_EXPLICIT) { 
  aborted by user code 
} else if (status & _XABORT_CONFLICT) { 
  read-write conflict 
} else if (status & _XABORT_CAPACITY) { 
  cache overflow 
} else { 
  … 
} 

Abort codes 

read/write set too big 
(maybe don’t retry) 



if (_xbegin() == _XBEGIN_STARTED) { 
  speculative code 
} else if (status & _XABORT_EXPLICIT) { 
  aborted by user code 
} else if (status & _XABORT_CONFLICT) { 
  read-write conflict 
} else if (status & _XABORT_CAPACITY) { 
  cache overflow 
} else { 
  … 
} 

Abort codes 

other abort codes … 



Too Big 

Transaction aborts if data set 
overflows caches, internal buffers 



Too Slow 

Transaction aborts on timer interrupt 



Just Not in the Mood 

Many other reasons: TLB miss, 
illegal instruction, page fault … 



Hybrid Transactional Memory 



if (_xbegin() == _XBEGIN_STARTED) { 
  read lock state 
  if (lock taken) _xabort(); 
  work; 
  _xend() 
} else { 
  lock->lock(); 
  work; 
  lock->unlock(); 
} 

Non-Speculative Fallback 



if (_xbegin() == _XBEGIN_STARTED) { 
  read lock state 
  if (lock taken) _xabort(); 
  work; 
  _xend() 
} else { 
  lock->lock(); 
  work; 
  lock->unlock(); 
} 

Non-Speculative Fallback 

reading lock ensures that 
transaction will abort if another 

thread acquires lock 



if (_xbegin() == _XBEGIN_STARTED) { 
  read lock state 
  if (lock taken) _xabort(); 
  work; 
  _xend() 
} else { 
  lock->lock(); 
  work; 
  lock->unlock(); 
} 

Non-Speculative Fallback 

abort if another thread has 
acquired lock 



if (_xbegin() == _XBEGIN_STARTED) { 
  read lock state 
  if (lock taken) _xabort(); 
  work; 
  _xend() 
} else { 
  lock->lock(); 
  work; 
  lock->unlock(); 
} 

Non-Speculative Fallback on abort, acquire lock & do work 
(aborting concurrent speculative 

transactions) 

Art of Multiprocessor Programming 
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Lock Elision 
<HLE acquire prefix> lock(); 
do work; 
<HLE release prefix> unlock() 

Art of Multiprocessor Programming 
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Lock Elision 
<HLE acquire prefix> lock(); 
do work; 
<HLE release prefix> unlock() 

first time around, 
read lock and 

execute speculatively 

Art of Multiprocessor Programming 
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Lock Elision 
<HLE acquire prefix> lock(); 
do work; 
<HLE release prefix> unlock() 

if speculation fails, 
no more Mr. Nice Guy, 

acquire the lock 

Art of Multiprocessor Programming 



Conventional Locks 
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lock transfer latencies 

serialized execution 

locks 
Art of Multiprocessor Programming 



Lock Elision 

95 

locks lock elision 
Art of Multiprocessor Programming 



Lock Teleportation 

96 
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Hand-over-Hand locking 

a b c 

Art of Multiprocessor Programming 
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Hand-over-Hand locking 

a b c 
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Hand-over-Hand locking 

a b c 

Art of Multiprocessor Programming 
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Hand-over-Hand locking 

a b c 

Art of Multiprocessor Programming 
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Removing a Node 

a b c d 

remove(b) 
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Removing a Node 

a b c d 

Art of Multiprocessor Programming 

remove(b) 



Lock Teleportation 

a b c d 

Art of Multiprocessor Programming 



Lock Teleportation 

a b c d read transaction 

Art of Multiprocessor Programming 



Lock Teleportation 

a b c d read transaction 

Art of Multiprocessor Programming 



Lock Teleportation 

a b c d 

no locks acquired 

Art of Multiprocessor Programming 



How Far to Teleport? 

107 

Too short? 

Missed opportunity 

Too far? 

Transaction aborts, work lost 



Adaptive Teleportion 
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On Success: 

limit = limit + 1 

On Failure: 

limit = limit / 2 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

locked node 
In sorted list 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

locked node 
In sorted list 

Value to 
search for 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

Returns locked node with 
value less than or equal to v 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

Try for a fixed number of times 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; Executed as read-only 

transaction 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

Thread-local variable that 
controls how far to traverse 

the list 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

Stop if either (1) we find 
value v, or (2) we traverse 
teleportLimit nodes 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

Unlock starting node, lock 
final node 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse up to teleportLimit nodes 
      move lock 
      _xend();                   
      teleportLimit++;              
      return pred; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

Try to commit transaction 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse list up to threshold 
      move lock 
      _xend();                   
      teleportLimit++;              
      return last node; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

On commit, advance 
teleportLimit by 1, 
and return locked node 
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Node* teleport(Node* start, T v) { 
  int retries = RETRY_THRESHOLD;  
  while (--retries) {                 
    int distance = 0; 
    if (xbegin() == _XBEGIN_STARTED) { 
      traverse list up to threshold 
      move lock 
      _xend();                   
      teleportLimit++;              
      return last node; 
    } else { 
      teleportLimit = teleportLimit/2 
    }}}; 

On abort, cut 
teleportLimit in half 



Lock-Based STMs 

121 

STMs come in different forms: 

Lock-Free 

Lock-based 



Lock-Based STM 
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But, didn’t you just say that locks are evil? 

For applications, yes! 

For run-time systems 
written by experts, 

maybe not …. 



Lock-Based STMs 

123 

Each transaction keeps 

Read Set: locations and values read 

Write Set: locations and values written 

Changes installed at commit 

Conflicts detected at comit 
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11:00 

13:01 

16:20 

Client Memory 
lock 

Too many 
locks! 

11:00 

10:22 



11:00 

11:00 

10:22 
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Client Memory 
lock 

Lock Striping 
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a 

b 

c 

d 

e 

11:00 

10:20 

11:00 



a 

11:00 

11:00 

10:22 b 
c 
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a 

b 

c 

d 

e 

11:00 

11:00 

10:22 

Read set 

Add address, 
values, and 
versions to 

read set 

To read memory … 

Check unlocked 
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To write memory … 

c’ 

e’ 

11:01 

11:01 

a 

b 

c 

d 

e 

11:00 

11:00 

10:22 

Write set 
Add address, 
new values 

and versions 
to write set 
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1 11:00 
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11:01 

11:01 

Write set 
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11:00 

11:00 

10:22 b 
c 

Read set 



a 

b 
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1 

2 

1 11:00 

11:00 

10:22 

c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
c 

Read set 



a 

b 

c 

d 

e 

1 

2 

1 11:00 

11:00 

10:22 

c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
c 

Read set 

To commit … 

Acquire write locks 

Compare version #s 

Install new values 

c’ 

e’ 
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b 

c’ 
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e’ 
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2 

1 11:00 

11:00 

10:22 

c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
c 

Read set 

To commit … 

Acquire write locks 

Compare version #s 

Install new values 

Increment version #s 

11:01 

11:01 

Release locks 
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A zombie human is dead but act like it is alive … 

A zombie transaction is one that will certainly 
abort, but continues to run … 

Why do we care? 
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2 

1 

x 

y 

Invariant: x = 2 y 
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2 

1 

x 

y 

Invariant: x = 2 y 

read x = 2 
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2 

1 

4 

2 

x 

y 

Invariant: x = 2 y 

x ← 4 
y ← 2 

commit 

read x = 2 
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2 

1 

4 

2 

x 

y 

Invariant: x = 2 y 

This transaction is a zombie, 

doomed to die, but still running! 

read x = 2 
read y = 2 

Who cares? 
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2 

1 

4 

2 

x 

y 

Invariant: x = 2 y 

z ← 1/(x-y) 
Oh, no! It divides by zero and crashes the system! 

read x = 2 
read y = 2 
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2 

1 

4 

2 

x 

y 

Invariant: x = 2 y 

z ← 1/(x-y) 

The property that every 

transaction sees a consisten 

state is called … 

read x = 2 
read y = 2 

Opacity 
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11:00 
Introduce version clock 

Incremented by (some) writers 

Guarantees opacity 

Read by everyone 
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11:00 a 

b 

c 

d 

e 

11:00 

10:30 

09:00 

Version numbers not 
really timestamps, but 

useful to pretend 
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11:00 
11:00 

a 

b 

c 

d 

e 

11:00 

10:30 

09:00 
Copy clock to rv 
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c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
c 

Read set 

11:00 
11:00 

Run speculative transaction 

as before … 
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1 11:00 

11:00 

10:22 

c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
c 

Read set 

11:00 
11:00 

Lock Write Set … 



11:00 
a 

b 

c 

d 

e 

1 

2 

1 11:00 

11:00 

10:22 

c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
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Read set 

11:00 
Increment global clock 

11:01 
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1 11:00 

11:00 

10:22 

c’ 

e’ 

11:01 

11:01 

Write set 
a 

11:00 

11:00 

10:22 b 
c 

Read set 

11:01 
11:00 

Validate read set… 
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c’ 

e’ 

11:01 

11:01 

Write set 
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11:00 

11:00 

10:22 b 
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Read set 

11:01 
11:00 

Commit & release 

locks 
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1 11:00 

11:00 

10:22 

a 

11:00 

11:00 

10:22 b 
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Read set 

11:00 
11:00 

Read-only 
transactions? 



a 

b 

c 

d 

e 

1 

2 

1 11:00 

11:00 

10:22 

a 

11:00 

11:00 

10:22 b 
c 

Read set 

11:00 
11:00 

Check that version 

numbers less than or 

equal to cached clock 

Check that variables read are unlocked 
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Transactional Memory 

Hardware Transactional Memory 

Hybrid Transactional Memory 

Software Transactional Memory 

Research Questions 



Art of Multiprocessor 
Programming 

151 

TM Design Issues 

•  Implementation 
choices 

•  Language design 
issues 

•  Semantic issues 
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Granularity 

•  Object 
– managed languages, Java, C#, … 
– Easy to control interactions between 

transactional & non-trans threads 
•  Word 

– C, C++, … 
– Hard to control interactions between 

transactional & non-trans threads 
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Direct/Deferred Update 

•  Deferred  
– modify private copies & install on commit 
– Commit requires work 
– Consistency easier 

•  Direct  
– Modify in place, roll back on abort 
– Makes commit efficient 
– Consistency harder 
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Conflict Detection 

•  Eager 
– Detect before conflict arises 
–  “Contention manager” module resolves 

•  Lazy 
– Detect on commit/abort 

•  Mixed 
– Eager write/write, lazy read/write … 
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Conflict Detection 

•  Eager detection may abort transactions 
that could have committed. 

•  Lazy detection discards more 
computation.  
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Contention Management & 
Scheduling 

•  How to resolve 
conflicts? 

•  Who moves forward 
and who rolls back? 

•  Lots of empirical 
work but formal work 
in infancy 
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Contention Manager Strategies 

•  Exponential backoff 
•  Priority to 

– Oldest? 
– Most work? 
– Non-waiting? 

•  None Dominates 
•  But needed anyway Judgment of Solomon 
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I/O & System Calls? 

•  Some I/O revocable 
–  Provide transaction-

safe libraries 
–  Undoable file 

system/DB calls 
•  Some not 

–  Opening cash 
drawer 

–  Firing missile 
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I/O & System Calls 

•  One solution: make transaction 
irrevocable 
–  If transaction tries I/O, switch to irrevocable 

mode. 
•  There can be only one … 

– Requires serial execution 
•  No explicit aborts 

–  In irrevocable transactions 
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Exceptions 

int i = 0; 
try { 
  atomic { 
    i++; 
    node = new Node(); 
  } 
} catch (Exception e) { 
  print(i); 
} 
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Exceptions 

int i = 0; 
try { 
  atomic { 
    i++; 
    node = new Node(); 
  } 
} catch (Exception e) { 
  print(i); 
} 

Throws OutOfMemoryException! 
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Exceptions 

int i = 0; 
try { 
  atomic { 
    i++; 
    node = new Node(); 
  } 
} catch (Exception e) { 
  print(i); 
} 

Throws OutOfMemoryException! 

What is 
printed? 
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Unhandled Exceptions 

•  Aborts transaction 
– Preserves invariants 
– Safer 

•  Commits transaction 
– Like locking semantics 
– What if exception object refers to values 

modified in transaction? 
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Nested Transactions 

atomic void foo() { 
  bar(); 
} 
 
atomic void bar() { 
 … 
} 
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Nested Transactions 

•  Needed for modularity 
– Who knew that cosine() contained a 

transaction? 
•  Flat nesting 

–  If child aborts, so does parent 
•  First-class nesting 

–  If child aborts, partial rollback of child only 
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Locks and transactions complement on another 
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TM can improve memory management, 
both automatic and explicit. 
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TM restructures in-memory databases 
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New research in energy-efficient synchronization 
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GPUs and accelerators need synchronization 
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TM can simplify operating system kernels, 
device drivers, security … 
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Transaction-Friendly data structures 



Theory 
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Architecture 
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Gartner Hype Cycle 

Hat tip: Jeremy Kemp 

You are here 
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