
Transactional Memory

Companion slides for
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

TexPoint fonts used in EMF.
Read the TexPoint manual before you

delete this box.: AAAAA

Art of Multiprocessor
Programming

2

Moore’s Law

Clock speed
flattening

sharply

Transistor
count still

rising

Moore’s Law (in practice)

Art of Multiprocessor
Programming

3

Art of Multiprocessor
Programming

4

Nearly Extinct: the Uniprocesor

memory

cpu

Art of Multiprocessor
Programming

5

Endangered:
The Shared Memory Multiprocessor

(SMP)

cache

Bus Bus

shared memory

cache cache

Art of Multiprocessor
Programming

6

The New Boss:
The Multicore Processor

(CMP)

cache
Bus Bus

shared memory

cache cache All on the
same chip

Sun
T2000

Niagara

Art of Multiprocessor
Programming

7

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup
1.8x

7x
3.6x

Time: Moore’s law

Ideal Scaling Process

Art of Multiprocessor
Programming

8

User code

Multicore

Speedup 1.8x

7x
3.6x

Unfortunately, not so simple…

Actual Scaling Process

Art of Multiprocessor
Programming

9

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

Art of Multiprocessor
Programming

10

Amdahl’s Law

Speedup=
1-thread execution time

n-thread execution time

Art of Multiprocessor
Programming

11

Amdahl’s Law

Speedup=
​1/1+𝑝+ ​𝑝/𝑛  

Art of Multiprocessor
Programming

12

Amdahl’s Law

Speedup=
​1/1+𝑝+ ​𝑝/𝑛  

parallel
fraction

Art of Multiprocessor
Programming

13

Amdahl’s Law

Speedup=
​1/1+𝑝+ ​𝑝/𝑛  

parallel
fraction

Number of
threads

Art of Multiprocessor
Programming

14

Amdahl’s Law

Speedup=
​1/1+𝑝+ ​𝑝/𝑛  

parallel
fraction

Number of
threads

sequential
fraction

Bad synchronization ruins everything

Amdal’s Law

16

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

60% concurrent

40% sequential

How close to a 10-fold speedup?

17

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

60% concurrent

40% sequential

How close to a 10-fold speedup?

​1/1−0.6− ​0.6/10   = 2.17

18

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

80% concurrent

20% sequential

How close to a 10-fold speedup?

19

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

80% concurrent

20% sequential

How close to a 10-fold speedup?

​1/1−0.8− ​0.8/10   = 3.57

20

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

90% concurrent

10% sequential

How close to a 10-fold speedup?

21

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

80% concurrent

20% sequential

How close to a 10-fold speedup?

​1/1−0.9− ​0.9/10   = 5.26

22

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

99% concurrent

01% sequential

How close to a 10-fold speedup?

23

Example

Art of Multiprocessor Programming

You buy a 10-core machine …

Your application is:

80% concurrent

20% sequential

How close to a 10-fold speedup?

​1/1−0.99− ​0.99/10   = 9.17

Art of

Diminishing Returns

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

speedup

This course is about the parts that
are hard to make concurrent …

but still have a big influence on speedup!

25

Locking

Art of Multiprocessor
Programming

26

Coarse-Grained Locking

Art of Multiprocessor
Programming

Easily made correct …
But not scalable.

27

Fine-Grained Locking

Art of Multiprocessor
Programming

Can be very tricky …

28

Locks are not Robust

Art of Multiprocessor
Programming

If a thread holding
a lock is delayed …

No one else can make
progress

Locking Relies on Conventions

/*
 * When a locked buffer is visible to the I/O layer
 * BH_Launder is set. This means before unlocking
 * we must clear BH_Launder,mb() on alpha and then
 * clear BH_Lock, so no reader can see BH_Launder set
 * on an unlocked buffer and then risk to deadlock.
 */

Art of Multiprocessor
Programming

Relation between …

Lock data and object data …

Exists only in programmer’s mind

Actual comment
from Linux Kernel

(hat tip: Bradley Kuszmaul)

30

Simple Problems are hard

enq(x) enq(y) double-ended queue

No interference if
ends “far apart”

Interference OK if
queue is small

Clean solution is
publishable result:

[Michael & Scott PODC 97]
Art of Multiprocessor

Programming

Art of Multiprocessor
Programming

31

Locks Not Composable

Transfer item from one
queue to another

Must be atomic :
No duplicate or missing items

Art of Multiprocessor
Programming

32

Locks Not Composable

Lock source

Lock target

Unlock source
& target

Art of Multiprocessor
Programming

33

Locks Not Composable

Lock source

Lock target

Unlock source &
target

Methods cannot provide
internal synchronization

Objects must expose
locking protocols to clients

Clients must devise and
follow protocols

Abstraction broken!

34

Monitor Wait and Signal

zzz

Empty

buffer Yes!

Art of Multiprocessor
Programming

If buffer is empty,
 wait for item to show up

35

Wait and Signal do not Compose

empty

empty zzz…

Art of Multiprocessor
Programming

Wait for either?

Art of Multiprocessor
Programming

36 36

The Transactional Manifesto

Much modern programming practice
inadequate for multicore world

Agenda

Replace locking with a transactional API

Design languages and libraries

Implement efficient run-times

Road Map

37

Transactional Memory

Hardware Transactional Memory

Hybrid Transactional Memory

Software Transactional Memory

Research Questions

Road Map

38

Transactional Memory

Hardware Transactional Memory

Hybrid Transactional Memory

Software Transactional Memory

Research Questions

Art of Multiprocessor
Programming

39 39

Transactions
Block of code ….

Atomic: appears to happen
instantaneously
Serializable: all appear to
happen in one-at-a-time

order Commit: takes effect
(atomically)

Abort: has no effect
(typically restarted)

Art of Multiprocessor
Programming

40 40

atomic {
 x.remove(3);
 y.add(3);
}

atomic {
 y = null;
}

Atomic Blocks

Art of Multiprocessor
Programming

41 41

atomic {
 x.remove(3);
 y.add(3);
}

atomic {
 y = null;
}

Atomic Blocks

No data race

Art of Multiprocessor
Programming

42 42

public void LeftEnq(item x) {
 Qnode q = new Qnode(x);
 q.left = left;
 left.right = q;
 left = q;
}

A Double-Ended Queue

Write sequential Code

Art of Multiprocessor
Programming

43 43

public void LeftEnq(item x)
 atomic {
 Qnode q = new Qnode(x);
 q.left = left;
 left.right = q;
 left = q;
 }
}

A Double-Ended Queue

Art of Multiprocessor
Programming

44 44

public void LeftEnq(item x) {
 atomic {
 Qnode q = new Qnode(x);
 q.left = left;
 left.right = q;
 left = q;
 }
}

A Double-Ended Queue

Enclose in atomic block

Art of Multiprocessor
Programming

45 45

Warning
Not always this simple!

Conditional waits?

False conflicts?

Resource limits?

Better problems to have …

Art of Multiprocessor
Programming

46

Composition?

Art of Multiprocessor
Programming

47

Composition?
public void Transfer(Queue<T> q1, q2)
{
 atomic {
 T x = q1.deq();
 q2.enq(x);
 }
}

Trivial or what?

Art of Multiprocessor
Programming

48 48

public T LeftDeq() {
 atomic {
 if (left == null)
 retry;
 …

 }
}

Conditional Waiting

Roll back transaction
and restart when

something changes

Art of Multiprocessor
Programming

49 49

Composable Conditional Waiting
atomic {
 x = q1.deq();
} orElse {
 x = q2.deq();
}

Run 1st method. If it retries …
Run 2nd method. If it retries …

Entire statement retries

Research Questions

Road Map

50

Transactional Memory

Hardware Transactional Memory

Hybrid Transactional Memory

Software Transactional Memory

Art of Multiprocessor
Programming

51 51

Hardware Transactional
Memory

Exploit standard “cache coherence”

Detect synchronization conflicts …

Invalidate cached copies of data.

Standard Cache Coherence

Bus

cache

memory

cache cache

Art of Multiprocessor Programming

53

Standard Cache Coherence

Bus

cache

memory

cache cache
Random access memory (10s of cycles)

Art of Multiprocessor Programming

54

Standard Cache Coherence

cache

memory

cache cache

Bus

Shared Bus
• Broadcast medium
• One broadcaster at a time
• Processors and memory all “snoop”

Art of Multiprocessor Programming

55

Standard Cache Coherence

Bus

cache

memory

cache cache

Per-Processor Caches
• Small
• Fast: 1 or 2 cycles
• Address & state information

Art of Multiprocessor Programming

56

Bus

Processor Issues Load Request

Bus

cache

memory

cache cache

data

load x

Art of Multiprocessor Programming

57

Bus

Processor Issues Load Request

Bus

cache

memory

cache cache

load x

Art of Multiprocessor Programming

Got it!

data

E

data

58

Bus

Processor Issues Load Request

Bus

memory

cache cache data

data

Load x

E

Art of Multiprocessor Programming

59

Bus

Other Cache Responds

memory

cache cache

data

Got it

data data

Bus

E S S

Art of Multiprocessor Programming

60

S

Modify Cached Data

Bus

data

memory

cache data

data

data S

Art of Multiprocessor Programming

61

Bus

Invalidate

Bus

memory

cache data data

data

cache

Invalidate
x

S S M I

Art of Multiprocessor Programming

62

cache

Bus

Invalidate

memory

cache data

data
This cache acquires write permission

Art of Multiprocessor Programming

63

cache

Bus

Invalidate

memory

cache data

data

Other caches lose read permission

This cache acquires write permission

Art of Multiprocessor Programming

64

cache

Bus

Invalidate

memory

cache data

data

Memory provides data only if not present
in any cache, so no need to change it now

(expensive)

Art of Multiprocessor Programming

Art of Multiprocessor
Programming

65 65

HW Transactional Memory

Interconnect

caches

memory

read active

T

Art of Multiprocessor
Programming

66 66

Transactional Memory
read

active
T T

active

caches

memory

Art of Multiprocessor
Programming

67 67

Transactional Memory

active
T T

active committed

caches

memory

Art of Multiprocessor
Programming

68 68

Transactional Memory
write

active

committed

T
D caches

memory

Art of Multiprocessor
Programming

69 69

Rewind

active
T T

active write aborted

D caches

memory

Art of Multiprocessor
Programming

70 70

Transaction Commit
At Commit point …

No cache conflicts? We win.

Mark transactional cache entries ….
Was: read-only, Now: valid

Was: modified, Now: dirty
(will be written back)

That’s (almost) everything!

Road Map

71

Transactional Memory

Hardware Transactional Memory

Hybrid Transactional Memory

Software Transactional Memory

Research Questions

72

Hardware Transactional Memory (HTM)

IBM’s Blue Gene/Q & System Z & Power8

Intel’s Haswell TSX extensions

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
 _xend()
} else {
 abort handler
}

Intel RTM

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
 _xend()
} else {
 abort handler
}

Intel RTM

start a speculative
transaction

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
 _xend()
} else {
 abort handler
}

Intel RTM

If you see this, you are
inside a transaction

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
 _xend()
} else {
 abort handler
}

Intel RTM

If you see anything else,
your transaction aborted

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
 _xend()
} else {
 abort handler
}

Intel RTM

you could retry the
transaction, or take an

alternative path

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
} else if (status & _XABORT_EXPLICIT) {
 aborted by user code
} else if (status & _XABORT_CONFLICT) {
 read-write conflict
} else if (status & _XABORT_CAPACITY) {
 cache overflow
} else {
 …
}

Abort codes

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
} else if (status & _XABORT_EXPLICIT) {
 aborted by user code
} else if (status & _XABORT_CONFLICT) {
 read-write conflict
} else if (status & _XABORT_CAPACITY) {
 cache overflow
} else {
 …
}

Abort codes

speculative code can call
_xabort()

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
} else if (status & _XABORT_EXPLICIT) {
 aborted by user code
} else if (status & _XABORT_CONFLICT) {
 read-write conflict
} else if (status & _XABORT_CAPACITY) {
 cache overflow
} else {
 …
}

Abort codes
synchronization conflict
occurred (maybe retry)

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
} else if (status & _XABORT_EXPLICIT) {
 aborted by user code
} else if (status & _XABORT_CONFLICT) {
 read-write conflict
} else if (status & _XABORT_CAPACITY) {
 cache overflow
} else {
 …
}

Abort codes

read/write set too big
(maybe don’t retry)

if (_xbegin() == _XBEGIN_STARTED) {
 speculative code
} else if (status & _XABORT_EXPLICIT) {
 aborted by user code
} else if (status & _XABORT_CONFLICT) {
 read-write conflict
} else if (status & _XABORT_CAPACITY) {
 cache overflow
} else {
 …
}

Abort codes

other abort codes …

Too Big

Transaction aborts if data set
overflows caches, internal buffers

Too Slow

Transaction aborts on timer interrupt

Just Not in the Mood

Many other reasons: TLB miss,
illegal instruction, page fault …

Hybrid Transactional Memory

if (_xbegin() == _XBEGIN_STARTED) {
 read lock state
 if (lock taken) _xabort();
 work;
 _xend()
} else {
 lock->lock();
 work;
 lock->unlock();
}

Non-Speculative Fallback

if (_xbegin() == _XBEGIN_STARTED) {
 read lock state
 if (lock taken) _xabort();
 work;
 _xend()
} else {
 lock->lock();
 work;
 lock->unlock();
}

Non-Speculative Fallback

reading lock ensures that
transaction will abort if another

thread acquires lock

if (_xbegin() == _XBEGIN_STARTED) {
 read lock state
 if (lock taken) _xabort();
 work;
 _xend()
} else {
 lock->lock();
 work;
 lock->unlock();
}

Non-Speculative Fallback

abort if another thread has
acquired lock

if (_xbegin() == _XBEGIN_STARTED) {
 read lock state
 if (lock taken) _xabort();
 work;
 _xend()
} else {
 lock->lock();
 work;
 lock->unlock();
}

Non-Speculative Fallback on abort, acquire lock & do work
(aborting concurrent speculative

transactions)

Art of Multiprocessor Programming

91

Lock Elision
<HLE acquire prefix> lock();
do work;
<HLE release prefix> unlock()

Art of Multiprocessor Programming

92

Lock Elision
<HLE acquire prefix> lock();
do work;
<HLE release prefix> unlock()

first time around,
read lock and

execute speculatively

Art of Multiprocessor Programming

93

Lock Elision
<HLE acquire prefix> lock();
do work;
<HLE release prefix> unlock()

if speculation fails,
no more Mr. Nice Guy,

acquire the lock

Art of Multiprocessor Programming

Conventional Locks

94

lock transfer latencies

serialized execution

locks
Art of Multiprocessor Programming

Lock Elision

95

locks lock elision
Art of Multiprocessor Programming

Lock Teleportation

96

Art of Multiprocessor
Programming

97

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming

Art of Multiprocessor Programming
98

Hand-over-Hand locking

a b c

99

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming

100

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming

Art of Multiprocessor Programming 101

Removing a Node

a b c d

remove(b)

102

Removing a Node

a b c d

Art of Multiprocessor Programming

remove(b)

Lock Teleportation

a b c d

Art of Multiprocessor Programming

Lock Teleportation

a b c d read transaction

Art of Multiprocessor Programming

Lock Teleportation

a b c d read transaction

Art of Multiprocessor Programming

Lock Teleportation

a b c d

no locks acquired

Art of Multiprocessor Programming

How Far to Teleport?

107

Too short?

Missed opportunity

Too far?

Transaction aborts, work lost

Adaptive Teleportion

108

On Success:

limit = limit + 1

On Failure:

limit = limit / 2

Art of Multiprocessor
Programming

109 109

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Art of Multiprocessor
Programming

110 110

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

locked node
In sorted list

Art of Multiprocessor
Programming

111 111

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

locked node
In sorted list

Value to
search for

Art of Multiprocessor
Programming

112 112

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Returns locked node with
value less than or equal to v

Art of Multiprocessor
Programming

113 113

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Try for a fixed number of times

Art of Multiprocessor
Programming

114 114

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}}; Executed as read-only

transaction

Art of Multiprocessor
Programming

115 115

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Thread-local variable that
controls how far to traverse

the list

Art of Multiprocessor
Programming

116 116

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Stop if either (1) we find
value v, or (2) we traverse
teleportLimit nodes

Art of Multiprocessor
Programming

117 117

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Unlock starting node, lock
final node

Art of Multiprocessor
Programming

118 118

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse up to teleportLimit nodes
 move lock
 _xend();
 teleportLimit++;
 return pred;
 } else {
 teleportLimit = teleportLimit/2
 }}};

Try to commit transaction

Art of Multiprocessor
Programming

119 119

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse list up to threshold
 move lock
 _xend();
 teleportLimit++;
 return last node;
 } else {
 teleportLimit = teleportLimit/2
 }}};

On commit, advance
teleportLimit by 1,
and return locked node

Art of Multiprocessor
Programming

120 120

Node* teleport(Node* start, T v) {
 int retries = RETRY_THRESHOLD;
 while (--retries) {
 int distance = 0;
 if (xbegin() == _XBEGIN_STARTED) {
 traverse list up to threshold
 move lock
 _xend();
 teleportLimit++;
 return last node;
 } else {
 teleportLimit = teleportLimit/2
 }}};

On abort, cut
teleportLimit in half

Lock-Based STMs

121

STMs come in different forms:

Lock-Free

Lock-based

Lock-Based STM

122

But, didn’t you just say that locks are evil?

For applications, yes!

For run-time systems
written by experts,

maybe not ….

Lock-Based STMs

123

Each transaction keeps

Read Set: locations and values read

Write Set: locations and values written

Changes installed at commit

Conflicts detected at comit

124

11:00

13:01

16:20

Client Memory
lock

Too many
locks!

11:00

10:22

11:00

11:00

10:22

125

Client Memory
lock

Lock Striping

126

a

b

c

d

e

11:00

10:20

11:00

a

11:00

11:00

10:22 b
c

127

a

b

c

d

e

11:00

11:00

10:22

Read set

Add address,
values, and
versions to

read set

To read memory …

Check unlocked

128

To write memory …

c’

e’

11:01

11:01

a

b

c

d

e

11:00

11:00

10:22

Write set
Add address,
new values

and versions
to write set

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

To commit …

Acquire write locks

Compare version #s

Install new values

c’

e’

a

b

c’

d

e’

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

To commit …

Acquire write locks

Compare version #s

Install new values

Increment version #s

11:01

11:01

Release locks

Zombie Transactions

133

A zombie human is dead but act like it is alive …

A zombie transaction is one that will certainly
abort, but continues to run …

Why do we care?

134

2

1

x

y

Invariant: x = 2 y

135

2

1

x

y

Invariant: x = 2 y

read x = 2

136

2

1

4

2

x

y

Invariant: x = 2 y

x ← 4
y ← 2

commit

read x = 2

137

2

1

4

2

x

y

Invariant: x = 2 y

This transaction is a zombie,

doomed to die, but still running!

read x = 2
read y = 2

Who cares?

138

2

1

4

2

x

y

Invariant: x = 2 y

z ← 1/(x-y)
Oh, no! It divides by zero and crashes the system!

read x = 2
read y = 2

139

2

1

4

2

x

y

Invariant: x = 2 y

z ← 1/(x-y)

The property that every

transaction sees a consisten

state is called …

read x = 2
read y = 2

Opacity

Version Clock

140

11:00
Introduce version clock

Incremented by (some) writers

Guarantees opacity

Read by everyone

Transactin

141

11:00 a

b

c

d

e

11:00

10:30

09:00

Version numbers not
really timestamps, but

useful to pretend

Transactions

142

11:00
11:00

a

b

c

d

e

11:00

10:30

09:00
Copy clock to rv

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

11:00
11:00

Run speculative transaction

as before …

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

11:00
11:00

Lock Write Set …

11:00
a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

11:00
Increment global clock

11:01

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

11:01
11:00

Validate read set…

a

b

c

d

e

1

2

1 11:00

11:00

10:22

c’

e’

11:01

11:01

Write set
a

11:00

11:00

10:22 b
c

Read set

11:01
11:00

Commit & release

locks

a

b

c

d

e

1

2

1 11:00

11:00

10:22

a

11:00

11:00

10:22 b
c

Read set

11:00
11:00

Read-only
transactions?

a

b

c

d

e

1

2

1 11:00

11:00

10:22

a

11:00

11:00

10:22 b
c

Read set

11:00
11:00

Check that version

numbers less than or

equal to cached clock

Check that variables read are unlocked

Road Map

150

Transactional Memory

Hardware Transactional Memory

Hybrid Transactional Memory

Software Transactional Memory

Research Questions

Art of Multiprocessor
Programming

151

TM Design Issues

•  Implementation
choices

•  Language design
issues

•  Semantic issues

Art of Multiprocessor
Programming

152

Granularity

•  Object
– managed languages, Java, C#, …
– Easy to control interactions between

transactional & non-trans threads
•  Word

– C, C++, …
– Hard to control interactions between

transactional & non-trans threads

Art of Multiprocessor
Programming

153

Direct/Deferred Update

•  Deferred
– modify private copies & install on commit
– Commit requires work
– Consistency easier

•  Direct
– Modify in place, roll back on abort
– Makes commit efficient
– Consistency harder

Art of Multiprocessor
Programming

154

Conflict Detection

•  Eager
– Detect before conflict arises
–  “Contention manager” module resolves

•  Lazy
– Detect on commit/abort

•  Mixed
– Eager write/write, lazy read/write …

Art of Multiprocessor
Programming

155

Conflict Detection

•  Eager detection may abort transactions
that could have committed.

•  Lazy detection discards more
computation.

Art of Multiprocessor
Programming

156

Contention Management &
Scheduling

•  How to resolve
conflicts?

•  Who moves forward
and who rolls back?

•  Lots of empirical
work but formal work
in infancy

Art of Multiprocessor
Programming

157

Contention Manager Strategies

•  Exponential backoff
•  Priority to

– Oldest?
– Most work?
– Non-waiting?

•  None Dominates
•  But needed anyway Judgment of Solomon

Art of Multiprocessor
Programming

158

I/O & System Calls?

•  Some I/O revocable
–  Provide transaction-

safe libraries
–  Undoable file

system/DB calls
•  Some not

–  Opening cash
drawer

–  Firing missile

Art of Multiprocessor
Programming

159

I/O & System Calls

•  One solution: make transaction
irrevocable
–  If transaction tries I/O, switch to irrevocable

mode.
•  There can be only one …

– Requires serial execution
•  No explicit aborts

–  In irrevocable transactions

Art of Multiprocessor
Programming

160

Exceptions

int i = 0;
try {
 atomic {
 i++;
 node = new Node();
 }
} catch (Exception e) {
 print(i);
}

Art of Multiprocessor
Programming

161

Exceptions

int i = 0;
try {
 atomic {
 i++;
 node = new Node();
 }
} catch (Exception e) {
 print(i);
}

Throws OutOfMemoryException!

Art of Multiprocessor
Programming

162

Exceptions

int i = 0;
try {
 atomic {
 i++;
 node = new Node();
 }
} catch (Exception e) {
 print(i);
}

Throws OutOfMemoryException!

What is
printed?

Art of Multiprocessor
Programming

163

Unhandled Exceptions

•  Aborts transaction
– Preserves invariants
– Safer

•  Commits transaction
– Like locking semantics
– What if exception object refers to values

modified in transaction?

Art of Multiprocessor
Programming

164

Nested Transactions

atomic void foo() {
 bar();
}

atomic void bar() {
 …
}

Art of Multiprocessor
Programming

165

Nested Transactions

•  Needed for modularity
– Who knew that cosine() contained a

transaction?
•  Flat nesting

–  If child aborts, so does parent
•  First-class nesting

–  If child aborts, partial rollback of child only

166

Locks and transactions complement on another

167

TM can improve memory management,
both automatic and explicit.

168

TM restructures in-memory databases

Power and Energy

169

New research in energy-efficient synchronization

GPUs, etc.

170

GPUs and accelerators need synchronization

171

TM can simplify operating system kernels,
device drivers, security …

172

Transaction-Friendly data structures

Theory

173

Architecture

174

Gartner Hype Cycle

Hat tip: Jeremy Kemp

You are here

176

Спасибо!

Art of Multiprocessor
Programming

177

178

