
Optimization of Scalable Concurrent Pool Based
on Diffraction Trees

Alexandr Anenkov, Alexey Paznikov
Saint Petersburg Electrotechnical University “LETI”

apaznikov@gmail.com

Abstract. The work proposes the implementation of scalable concur-
rent pool based on diffraction trees. Developed pool ensures localization
of addresses to shared variables to maximize its throughput. The pool
provides large scalability of multithreaded programs compared with sim-
ilar implementation of pool based on diffraction trees.

Keywords: multithreaded programming, diffracting trees, lock-free data
structures, scalability, thread-safe pool

Full paper: https://goo.gl/CtGb3X (in Russian)
https://www.dropbox.com/s/xlzzbd7mh9d0bcw/anenkov-paznikov-pool.

pdf?dl=0 (in English)

This paper proposes the novel approach for concurrent lock-free pool imple-
mentation based on diffraction trees and the methods for its optimization for
constant number of active threads. The approach is based on localization of ac-
cess to tree nodes and thread local storage utilization. The proposed approach
increases the throughput at high and low workload and provides good level of
FIFO/LIFO-order of operation execution.

We developed the pool LocOptDTPool in which each node of diffraction tree
contains two arrays of atomic bits (for producer and consumer threads) of length
m ≤ p instead of two separate atomic bits (figure ??). Nodes of each next level
of the tree contains twice less arrays compared with previous level. Each thread
addresses to corresponding bit in the array to ensure localization of references
to atomic bits in the tree nodes. Furthermore comparing with elimination array
method this approach reduces the overheads, connected with the references to
the elements of elimination array and active waiting of paired thread.

Each time when a thread visits tree node it chooses the element in the atomic
bit array by the value of hash function. Each core j ∈ {1, 2, . . . , p} corresponds
the queues qj = {j2h/n, j2h/n + 1, . . . , (j + 1)2h/n − 1}. Let there is thread i,
affined with the core j (a(i) = {j}). Then all the objects pushed (popped) to
the pool by this thread are distributed among the queues qj destined for the
objects arriving from the threads affined with the core j. This approach reduces
the number of cache misses thanks to reference localization to shared variables.



2 Alexandr Anenkov, Alexey Paznikov

Fig. 1: Optimized pool LocOptDTPool based on diffraction tree

We also developed scalable concurrent pool TLSDTPool. The pool is based
on allocation of tree node bits in thread-local storage (TLS). This approach de-
creases access contention to shared bits in tree nodes. The main idea of proposed
approach is the allocation of structure BitArray in thread’s TLS. This helps to
avoid heavy atomic operations while addressing to array bits in the BitArray
structure; bits now becomes regular boolean array.

The experimental results for throughput of implemented pool based on arrays
of atomic bits in tree nodes are represented on figure ??.

a b

Fig. 2: Throughput of pool LocOptDTPool
1 – LocOptDTPool, non-blocking queues Lockfree queues from boost library,
2 – LocOptDTPool, concurrent queues based on PThread mutex,
3 – single non-blocking concurrent queue Lockfree queue from boost library.

Implemented pools scales well for large number of threads and increase the
throughput as the number of threads comes near the number of processor cores.
Maximal throughput was obtained for number of threads which equals to num-
ber of processor cores or slightly exceed it. For large number of threads lock-free
queues in the pools LocOptDTPool TLSDTPool increases the throughput, com-



Algorithms for optimizing of scalable concurrent pool 3

paring with lock-based concurrent queues (figures ??b). In all cases the efficiency
of single concurrent queue is much less than the efficiency of developed pools.

Thus the pools maximize throughput in multithreading programs compared
with similar pool implementation based on diffraction trees. The highest effi-
ciency of the algorithms is achieved with the number of active threads equals to
the number of processor cores in the system. Increasing of tree size in the pool
does not reduce the pool throughput.


