
Flat Parallelization

V. Aksenov, ITMO University
P. Kuznetsov, ParisTech

July 4, 2017

1 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

2 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

3 / 53



Flat-combining. Small introduction.

I Some data structures, such as queues, stacks and priority
queues, have hot-spots and concurrent updates have to
serialize.

I Simple lock is not a solution.

I Flat-combining (FC) proposed in [Hendler, Incze, Shavit,
Tzafrir, SPAA 2010].

I We put the operation in the queue. (Similar to
ReentrantLock in Java)

I One processor obtains a lock, becomes the combiner and
performs all operations in queue sequentially.

4 / 53



Flat-combining. Stack.

I The processor puts its operation (push(x) or pop()) in
the queue and then tries to take a lock.

5 / 53



Flat-combining. Stack.

I If the processor succeeds in obtaining the lock it becomes
the combiner, others wait.

I Then the combiner reads all the requests: push(3),
push(4), pop(), push(2), pop().

I Make a correspondence between push(x) and pop()

operations. For example, push(4) and push(2) with
these two pop().

I And, �nally, simply push(3) on the stack.
6 / 53



Parallel �at-combining

I When the number of threads is high, we lost huge
computational power of waiting threads.

I Parallel FC. Introduced in [Hendler, Incze, Shavit, Tzafrir,
DISC 2010].

I Applied to unfair queue, a way to solve
producer-consumer problem.

7 / 53



Parallel �at-combining

I The queue with requests is split into parts of bounded
length.

I Each thread tries to take a corresponding lock to become
a local combiner.

8 / 53



Parallel �at-combining

I They locally combine requests

I Batch of remaining requests is put into the second FC
level.

9 / 53



Parallel �at-combining. Summary.

I This gives us additional utilization of computational
power.

I Unortunately, Parallel FC does not seem to be useful for
fair queues, stacks, heap-based priority queues, etc.

10 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

11 / 53



PRAM and Work-Time model

PRAM:

I p processors.

I Each has its own algorithm.

I Each time unit the processor performs one operation:
read from and write to shared register, local computation.

Work-time model:

I Presented in terms of a sequence of parallel rounds.

I Each parallel round consists of concurrent sequences of
instructions.

I The complexity in work and time.

12 / 53



Batch-update algorithms

I You are given list of m requests to perform.

I These requests are executed in parallel in PRAM or
Work-time model.

I Example, is binary search trees. You need to remove
sorted list of values in parallel and you need to insert
sorted list of values.

13 / 53



PRAM algorithms and Flat combining

I In FC we could read all the requests and prepare them.

I And then we could perform algorithm in PRAM model.

I For example, sort values of insert and delete requests for
the BST.

I As a data structure with hot-spot, heap-based priority
queue could have parallel algorithm.

14 / 53



Concurrent Data Structures for parallel programs

I Proposed in [Agrawal et al., SPAA 2014].

I For parallel programs with fork-join. There are two
graphs: core and batch.

I Batcher: publish request, tries to take a lock and goes to
�batch� mode.

I Work-stealing scheduler. Core-thread perform
alternating-steals from core and batch queues,
batch-thread steals from batch-queues.

15 / 53



Flat parallelization

General form of �at parallelization for Data Structures in
asynchronous model:

I Put operation into the queue.

I Try to take a lock and become a combiner.

I If combiner, prepare the requests before the batch-update
algorithm.

I Wake the waiting threads.

I The threads emulate batch-update PRAM algorithm in
the asynchronous system.

16 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

17 / 53



Binary heap as a running example

I Choose priority queue basesd on binary heap as an
example.

I Two types of requests: insert and extractMin.

I We provide two algorithms for batch-insert and
batch-extractMin.

I No previously known batch-update PRAM algorithm of
the binary heap.

18 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

19 / 53



ExtractMin. Sequential algorithm.

I Swap the last element with the element in the root.

I Then sift the root down.

20 / 53



ExtractMin. Sequential algorithm.

21 / 53



ExtractMin. Sequential algorithm.

22 / 53



ExtractMin. Sequential algorithm.

23 / 53



ExtractMin. Sequential algorithm.

24 / 53



ExtractMin. Batch-update algorithm

I Swap last m elements with the smallest m elements in
O(m logm) time.

I Each node has a �ag ready. Initially, replaced elements
are not ready.

I Each thread starts to work on some non-ready vertex and
tries to sift down its value only if both of its child are
ready.

25 / 53



ExtractMin. Batch-update algorithm.

26 / 53



ExtractMin. Batch-update algorithm.

27 / 53



ExtractMin. Batch-update algorithm.

28 / 53



ExtractMin. Batch-update algorithm.

29 / 53



ExtractMin. Batch-update algorithm.

30 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

31 / 53



Insert. Sequential algorithm.

I We look at the path to the new position in heap.

I We go downwards by that path with inserted value x .

I Compare x with the value in the current node and if less
then swap.

32 / 53



Insert. Sequential algorithm.

33 / 53



Insert. Sequential algorithm.

34 / 53



Insert. Sequential algorithm.

35 / 53



Insert. Sequential algorithm.

36 / 53



Insert. Batch-update algorithm.

I Consider m paths to new m positions in heap,

I Mark m − 1 nodes with new positions in both subtrees as
split nodes.

I Exactly one thread sleeps in each split node.

37 / 53



Insert. Batch-update algorithm.

38 / 53



Insert. Batch-update algorithm,

I Combiner starts from the root with the sorted list of
values.

I In each node, processor compares the smallest value in
the list with the value in the current node.

I Probably, put the value of the node in the list and put the
smallest value in the node.

I If the current node is not a split node, the processor
continues with the proper child.

I Otherwise, it splits the list of values in the lists for the
left and right children. Then wake up the processor in the
node and give him the list for the right child. The old
thread continues with the left child and the waken thread
continues with the right child.

39 / 53



Insert. Batch-update algorithm.

40 / 53



Insert. Batch-update algorithm.

41 / 53



Insert. Batch-update algorithm.

42 / 53



Insert. Batch-update algorithm.

43 / 53



Insert. Batch-update algorithm.

44 / 53



Insert. Batch-update algorithm.

45 / 53



Insert. Batch-update algorithm.

46 / 53



Insert. Batch-update algorithm.

47 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

48 / 53



Theoretical bounds

I m batch-extractMin. O(m logm) for preparation,
O(m log n) work and O(log n) span for the rest.

I m batch-insert. O(m logm) for preparation. O(m log n)
work and O(m + log n) span for the rest.

I We outperform simple binary heap with �at-combining by
m log n

m logm+log n
.

I When m ≈ log n, we get almost perfect speedup.

49 / 53



Evaluation

I Workload: 50% insert random integer and 50%
extractMin.

I Initial size of the heap: 8 · 106.

0 20 40 60
0

1

2

Number of Threads

T
h
ro
u
g
h
p
u
t,
m
o
p
s/
s

FC Parallel
FC Binary
FC Pairing

Lock-based SL
Lock-free SL
Coarse Binary

50 / 53



Outline

Flat-combining

PRAM and Flat parallelization

PRAM binary heap with Flat parallelization
ExtractMin
Insert
Bounds and Evaluation

Conclusion

51 / 53



Conclusion

Proposed Flat parallelization could be used to:

I Implement priority queue comparable to state-of-the-art
approaches.

I Implement Binary Search Tree with perfect balancing.
(Implemented. Works 5-10 times slower on random load.)

I Automatically provides a concurrent implementation of a
data structure given PRAM counterpart. For example,
dynamic tree.

52 / 53



Questions?

Thank you for your attention!

53 / 53


	Flat-combining
	PRAM and Flat parallelization
	PRAM binary heap with Flat parallelization
	ExtractMin
	Insert
	Bounds and Evaluation

	Conclusion

