
Algorithms and data structures. Lesson 14. Hash Tables

14.1. Let the number of possible keys be U > nm, where n is the number of elements in the hash table,
and m is its size. Show that for any hash function, in the worst case, it is possible for all n elements
to fall into same bucket of the hash table.

14.2. Let h(k) be a random hash function. What is the mathematical expectation of the number of
collisions (the number of pairs (x, y), x ̸= y such that h(x) = h(y))?

14.3. We will resolve collisions using lists, but keep the lists in sorted order. How does this affect the worst
case and average time complexity?

14.4. Add to the hash table the ability to iterate all its elements in the order in which they were added
in O(n).

14.5. Add the merge operation to the hash set, which combines two sets into one. Amortized running time
O(log n).

14.6. See how the Long.hashCode() method works in Java. How can you generate many Longs with the
same hash? Try to put them in HashSet<Long> and then put in another HashSet <Long> the same
number of random Longs, look at how much runtime differs.

14.7. The same with String.hashCode().

14.8. Add a countUnique operation to the dequeue, which returns the number of distinct items in the
queue. Time O(1).

Page 1 of 1


