
SPb IFMO Training 01
Waterloo Contests Selection, September 10, 2013

Problem A. Trainsorting
Input file: trainsorting.in

Output file: trainsorting.out

Erin is an engineer. She drives trains. She also arranges the cars
within each train. She prefers to put the cars in decreasing order
of weight, with the heaviest car at the front of the train.

Unfortunately, sorting train cars is not easy. One cannot simply
pick up a car and place it somewhere else. It is impractical to
insert a car within an existing train. A car may only be added to
the beginning and end of the train.

Cars arrive at the train station in a predetermined order. When
each car arrives, Erin can add it to the beginning or end of her
train, or refuse to add it at all. The resulting train should be as
long as possible, but the cars within it must be ordered by weight.

Given the weights of the cars in the order in which they arrive,
what is the longest train that Erin can make?

Input
The first line contains an integer 0 ≤ n ≤ 2000, the number of
cars. Each of the following n lines contains a non-negative integer
giving the weight of a car. No two cars have the same weight.

Output
Output a single integer giving the number of cars in the longest
train that can be made with the given restrictions.

Example
trainsorting.in trainsorting.out

3

1

2

3

3

Problem B. Hot Spot
Input file: hotspot.in

Output file: hotspot.out

Hot Spot is a single player game played on a 4 by 4 game board.
The purpose of the game is to move a red robot from its current
location on the board to the top left corner. The game board may
also contain green and blue robots. Each square of the game board
can be occupied by no more than one robot at any time.

A robot may move in one of two ways:

1. If two robots are adjacent horizontally or vertically (but not
diagonally), one of them may jump over the other to the
immediately adjacent square, provided that square is empty.
For example, if robot a is immediately to the left of robot b,
robot a may jump to the square immediately to the right of
robot b.

2. If three robots are adjacent in a line (again not diagonally),
one of them may jump over the other two, provided the desti-
nation square is empty. For example, if robot b is immediately
to the right of robot a and robot c is immediately to the right
of robot b, robot a may jump to the square immediately to
the right of robot c.

Every jump only changes the positions of the existing robots;
robots are never removed from or added to the game board.

A blue robot is never allowed to be adjacent horizontally or verti-
cally to another blue robot or to the red robot.

Given the initial configuration of the game board, determine the
minimum number of jumps required to move the red robot into the
top left corner.

Input
The input specifies the initial position of the board using four lines,
each containing four characters. Each character may be either R,
indicating the red robot, B, indicating a blue robot, G, indicating
a green robot, or a period (.), indicating an empty square.

Output
Output a single line containing a single integer, the minimum num-
ber of jumps required for the red robot to reach the top left square
of the game board.

Example
hotspot.in hotspot.out

.GR.

....

....

....

1

Problem C. Snakes and Ladders
Input file: snakesandladders.in

Output file: snakesandladders.out

Snakes and Ladders is a board game played on a 10 by 10 grid.
The squares of the grid are numbered 1 to 100. Each player has a
token which is placed on the square numbered 1 at the beginning
of the game. Players take turns rolling a die which provides a
random number between 1 and 6. After rolling, the player advances
his or her token the number of squares shown on the die. If this
would put the token past the square numbered 100, the token is
advanced to 100. After advancing, if the token is on a square
containing the bottom of a ladder, the token must be moved to the
square containing the top of the ladder. Similarly, if the token is
on a square containing the mouth of a snake, the token must be
moved to the square containing the tail of the snake. No square
contains more than one endpoint of any snake or ladder. The token
numbered 100 does not contain the mouth of a snake or the bottom
of a ladder. A player wins when his or her token reached the square
numbered 100. At that point, the game ends.

Given the configuration of the snakes and ladders on a game board
and a sequence of die rolls, you are to determine the positions of
all the tokens on the game board. The sequence of die rolls need
not be complete (i.e. it need not lead to any player winning). The
sequence of die rolls may also continue after the game is over; in
this case, the die rolls after the end of the game should be ignored.

Input
The first line contains three positive integers: the number a of
players, the number b of snakes or ladders, and the number c of die
rolls. There will be no more than 1000000 players and no more than
1000000 die rolls. Each of the next b lines contains two integers
specifying a snake or ladder. The first integer indicates the square
containing the mouth of the snake or the bottom of the ladder.
The second integer indicates the square containing the tail of the
snake or the top of the ladder. The following c lines each contain
one integer giving number rolled on the die.

Page 1 of 4

SPb IFMO Training 01
Waterloo Contests Selection, September 10, 2013

Output
For each player, output a single line containing a string of the
form “Position of player N is P.”, where N is replaced with
the number of the player and P is replaced with the final position
of the player.

Example
snakesandladders.in

3 1 3

4 20

3

4

5

snakesandladders.out

Position of player 1 is 20.

Position of player 2 is 5.

Position of player 3 is 6.

Problem D. Virtual Friends
Input file: virtualfriends.in

Output file: virtualfriends.out

These days, you can do all sorts of things online. For example, you
can use various websites to make virtual friends. For some people,
growing their social network (their friends, their friends’ friends,
their friends’ friends’ friends, and so on), has become an addictive
hobby. Just as some people collect stamps, other people collect
virtual friends.

Your task is to observe the interactions on such a website and keep
track of the size of each person’s network.

Assume that every friendship is mutual. If Fred is Barney’s friend,
then Barney is also Fred’s friend.

Input
The first line of input contains one integer specifying the number
of test cases to follow. Each test case begins with a line containing
an integer F , the number of friendships formed, which is no more
than 100 000. Each of the following F lines contains the names of
two people who have just become friends, separated by a space. A
name is a string of 1 to 20 letters (uppercase or lowercase).

Output
Whenever a friendship is formed, print a line containing one inte-
ger, the number of people in the social network of the two people
who have just become friends.

Example
virtualfriends.in virtualfriends.out

1

3

Fred Barney

Barney Betty

Betty Wilma

2

3

4

Problem E. Dominos
Input file: dominos.in

Output file: dominos.out

Dominos are lots of fun. Children like to stand the tiles on their
side in long lines. When one domino falls, it knocks down the next
one, which knocks down the one after that, all the way down the

line. However, sometimes a domino fails to knock the next one
down. In that case, we have to knock it down by hand to get the
dominos falling again.

Your task is to determine, given the layout of some domino tiles,
the minimum number of dominos that must be knocked down by
hand in order for all of the dominos to fall.

Input
The first line of input contains one integer specifying the number
of test cases to follow. Each test case begins with a line containing
two integers, each no larger than 100 000. The first integer n is the
number of domino tiles and the second integer m is the number
of lines to follow in the test case. The domino tiles are numbered
from 1 to n. Each of the following lines contains two integers x
and y indicating that if domino number x falls, it will cause domino
number y to fall as well.

Output
For each test case, output a line containing one integer, the min-
imum number of dominos that must be knocked over by hand in
order for all the dominos to fall.

Example
dominos.in dominos.out

1

3 2

1 2

2 3

1

Problem F. Logo
Input file: logo.in

Output file: logo.out

Logo is a programming language built around a turtle. Commands
in the language cause the turtle to move. The turtle has a pen
attached to it. As the turtle moves, it draw lines on the page. The
turtle can be programmed to draw interesting pictures.

We are interested in making the turtle draw a picture, then return
to the point that it started from. For example, we could give the
turtle the following program:

fd 100 lt 120 fd 100 lt 120 fd 100

The command fd causes the turtle to move forward by the specified
number of units. The command lt causes the turtle to turn left by
the specified number of degrees. Thus the above commands cause
the turtle to draw an equilateral triangle with sides 100 units long.
Notice that after executing the commands, the turtle ends up in
the same place as it started. The turtle understands two additional
commands. The command bk causes the turtle to move backward
by the specified number of units. The command rt causes the
turtle to turn right by the specified number of degrees.

After executing many commands, the turtle can get lost, far away
from its starting position. Your task is to determine the straight-
line distance from the turtle’s position at the end of its journey
back to the position that it started from.

Input
The first line of input contains one integer specifying the number
of test cases to follow. Each test case starts with a line containing
one integer, the number of commands to follow. The commands
follow, one on each line. Each test case will contain no more than
1000 commands.

Page 2 of 4

SPb IFMO Training 01
Waterloo Contests Selection, September 10, 2013

Output
For each test case, output a line containing a single integer, the
distance rounded to the nearest unit.

Example
logo.in logo.out

1

5

fd 100

lt 120

fd 100

lt 120

fd 100

0

Problem G. Cranes
Input file: cranes.in

Output file: cranes.out

A crane is a wonderful tool for putting up a building. It makes the
job go very quickly. When the building must go up even faster,
more than one crane can be used. However, when there are too
many cranes working on the same building, it can get dangerous.
As the cranes spins around, it can bump into another crane if the
operator is not careful. Such an accident could cause the cranes to
fall over, possibly causing major damage. Therefore, safety regu-
lations require cranes to be spaced far enough apart so that it is
impossible for any part of a crane to touch any part of any other
crane. Unfortunately, these regulations limit the number of cranes
that can be used on the construction site, slowing down the pace of
construction. Your task is to place the cranes on the construction
site while respecting the safety regulations.

The construction site is laid out as a square grid. Several places on
the grid have been marked as possible crane locations. The arm
of each crane has a certain length r, and can rotate around the
location of the crane. The crane covers the entire area that is no
more than r units away from the location of the crane. You are
to place the cranes to maximize the total area covered by all the
cranes.

Input
The first line of input contains one integer specifying the number of
test cases to follow. Each test case begins with a line containing an
integer C, the number of possible locations where a crane could be
placed. There will be no more than 15 such locations. Each of the
following C lines contains three integers x, y, and r, all between
−10 000 and 10 000 inclusive. The first two integers are the grid
coordinates of the location, and the third integer is the length of
the arm of the crane that can be placed at that location.

Output
For each test case, find the maximum area A that can be covered
by cranes, and output a line containing a single integer B such that
A = B × π.

Example
cranes.in cranes.out

1

3

0 0 4

5 0 4

-5 0 4

32

Problem H. WiFi
Input file: wifi.in

Output file: wifi.out

One day, the residents of Main Street got together and decided that
they would install wireless internet on their street, with coverage
for every house. Now they need your help to decide where they
should place the wireless access points. They would like to have
as strong a signal as possible in every house, but they have only
a limited budget for purchasing access points. They would like
to place the available access points so that the maximum distance
between any house and the access point closest to it is as small as
possible.

Main Street is a perfectly straight road. The street number of
each house is the number of metres from the end of the street to
the house. For example, the house at address 123 Main Street is
exactly 123 metres from the end of the street.

Input
The first line of input contains an integer specifying the number
of test cases to follow. The first line of each test case contains two
positive integers n, the number of access points that the residents
can buy, and m, the number of houses on Main Street. The fol-
lowing m lines contain the house numbers of the houses on Main
Street, one house number on each line. There will be no more than
100 000 houses on Main Street, and the house numbers will be no
larger than one million.

Output
For each test case, output a line containing one number, the max-
imum distance between any house and the access point nearest to
it. Round the number to the nearest tenth of a metre, and output
it with exactly one digit after the decimal point.

Example
wifi.in wifi.out

1

2 3

1

3

10

1.0

Problem I. Logo 2
Input file: logo2.in

Output file: logo2.out

Logo is a programming language built around a turtle. Commands
in the language cause the turtle to move. The turtle has a pen
attached to it. As the turtle moves, it draw lines on the page. The
turtle can be programmed to draw interesting pictures.

We are interested in making the turtle draw a picture, then return
to the point that it started from. For example, we could give the
turtle the following program:

fd 100 lt 120 fd 100 lt 120 fd 100

The command fd causes the turtle to move forward by the specified
number of units. The command lt causes the turtle to turn left by
the specified number of degrees. Thus the above commands cause
the turtle to draw an equilateral triangle with sides 100 units long.
Notice that after executing the commands, the turtle ends up in
the same place as it started. The turtle understands two additional
commands. The command bk causes the turtle to move backward
by the specified number of units. The command rt causes the tur-

Page 3 of 4

SPb IFMO Training 01
Waterloo Contests Selection, September 10, 2013

tle to turn right by the specified number of degrees. The distances
and angles in all commands are always non-negative integers.

Unfortunately, we have been messy in writing the program down,
and cannot read our own writing. One of the numbers in the
program is missing. Assuming the turtle ends up at the place
that it started at the end of its journey, can you find the missing
number?

Input
The first line of input contains one integer specifying the number of
test cases to follow. Each test case starts with a line containing one
integer, the number of commands to follow. The commands follow,
one on each line. Each test case will contain no more than 1000
commands. The argument of each command is either an integer or
a question mark (?). There will be exactly one question mark in
each test case.

Output
For each test case, output line containing a single integer n such
that when the question mark in the program is replaced by n, the
turtle ends up at the same point that it started from once the
program completes. If the question mark is the argument of an lt

or rt command, the angle in the output must be between 0 and 359
degrees, inclusive. The correct answer will always be an integer,
and we guarantee that for every test case, there will be only one
correct answer.

Example
logo2.in logo2.out

1

5

fd 100

lt 120

fd ?

lt 120

fd 100

100

Page 4 of 4

