
SPb NRU ITMO Training 02 — Balcan OI 2004, CEOI 2004
September 14, 2013

Problem A. Coins
Input file: coins.in
Output file: coins.out
Time limit: 2 seconds
Memory limit: 64 megabytes

You are given M positive integer values and one of these values
is 1. You are also given an unlimited number of coins of each
of these values. Consider the following problem: A certain
amount of money S should be paid by a minimal number of
coins with the given values.

It is known that this problem is solvable in some cases by the
following greedy algorithm: Find the greatest value of a coin
that is less than or equal to S, and then subtract it from S.
Continue doing the same, until the value of S becomes zero.
The number of coins, which is used by the algorithm to reduce
S to zero seems to be the minimal number of coins needed at
all.

In many cases the above assertion is true, but on some sets of
values and for some S the greedy algorithm described above
does not compute the optimal solution. For example, on a set
of values {1, 2, 5, 7, 10} and for S = 14, the greedy algorithm
gives a solution with 3 coins (14 = 10+2+2), while the obvious
minimal solution is with 2 coins (14 = 7 + 7).

A question arises — for which sets of values the greedy algo-
rithm does not produce an optimal solution. Write a program
that for a given set of coins’ values should examine if there ex-
ists an amount S, which is representable by a smaller number
of coins than the greedy algorithm says.

Input

On the first line of the input, the number M of differ-
ent coins’ values is given (1 < M < 100). On the sec-
ond line of the input, the values a1, a2, . . . , aM are given
(1 = a1 < a2 < · · · < aM ≤ 7000000), separated by a sin-
gle space. On the third line of the input two integers x and y
are given (0 < x < y ≤ 7000000), separated by a space.

Output

The program should print on the first line of the output file
a value S, x ≤ S ≤ y, for which the greedy algorithm fails
to give the optimal solution. On the second line, the program
should print the numbers b1, b2, . . . , bM of coins (separated by
a space), corresponding to the different values (in the same
order as given in the input) to represent the amount of S, i.e.
S = a1b1 + a2b2 + . . . + aMbM . The total number of used coins
should be less than the number of coins obtained by the greedy
algorithm. If there exists more than one solution, your program
should print any of them.

The input data always guarantee the presence of at least one
S for which the described greedy algorithm fails.

Example

coins.in coins.out
5
1 2 5 7 10
1 100

14
0 0 0 2 0

Problem B. Game
Input file: game.in
Output file: game.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Little Ivan likes to play games in his spare time. Unfortunately,
he cannot always enjoy the company of his friends and some-
times he is a little bored when he is alone. Therefore, he makes
up games, where he is the only player. He is especially proud
of his last game and likes to tell you about it.

You are given two finite sequences of positive integers. The
game consists of making consecutive moves. You are allowed
to make the following move. You remove the last K1 numbers
(K1 ≥ 1) from the first sequence (possibly the whole sequence)
and find their sum S1 and the last K2 numbers (K2 ≥ 1) from
the second sequence (again you can remove the whole sequence)
and find their sum S2. Then you calculate the cost of the move
to be (S1 − K1)(S2 − K2). You continue to make moves until
you remove all the numbers in both sequences. The total cost
of the game is the sum of the costs of all moves. Your goal is
to minimize this total cost. You are not allowed to leave one
of the sequences empty, while the other is not.

As Ivan has told you the rules of the game, you realize that it
is easily solvable with the help of a computer, so you decide to
write a program that computes the minimum total cost of the
game.

Input

Input data consist of three lines. The first line contains two
space-separated integers, L1 and L2 (1 ≤ L1, L2 ≤ 2000), which
denote the lengths of the two sequences. The second line con-
tains L1 space-separated integers, which are the elements of
the first sequence. The third line contains L2 space-separated
integers, which are the elements of the second sequence. The
elements of the sequences do not exceed 1000.

Output

Your program has to output one line that contains only one
number — the minimum total cost of the game as described
above.

Example

game.in game.out
3 2
1 2 3
1 2

2

Problem C. Journey
Input file: journey.in
Output file: journey.out
Time limit: 2 seconds
Memory limit: 64 megabytes

There are n cities in Byteland (numbered from 1 to n), con-
nected by bidirectional roads. The king of Byteland is not very
generous, so there are only n−1 roads, but they are connected
in such a way that it is possible to travel from each city to any
other city.

Page 1 of 4



SPb NRU ITMO Training 02 — Balcan OI 2004, CEOI 2004
September 14, 2013

One day a traveller Byterider arrived in the city number k.
He was planning to make a journey starting in the city k and
visiting on his way cities m1, m2, . . . ,mj (not necessarily in
this order) — the numbers mi are all different and they are
also different from k. Byterider — like every traveller — has
only a limited amount of money, so he would like to visit all the
cities that he has planned to visit using the shortest possible
path (starting in the city k). A path is one road or a sequence
of roads, where every next road begins in the city where the
previous one ends. Help Byterider to determine the length of
the shortest path for his journey.

Input

The first line of the input file contains two integers n and k
separated by a single space (2 ≤ n ≤ 50 000, 1 ≤ k ≤ n), n
is the number of cities in Byteland and k is the number of the
first city on Byterider’s path. Each of the following n− 1 lines
contain the description of one road each. Line i + 1 contains
three integers: ai, bi and di (1 ≤ ai, bi ≤ n, 1 ≤ di ≤ 1 000), ai

and bi are the cities connected by the road, and di is the length
of the road. Line n+1 contains one integer j — the number of
cities which Byterider would like to visit (1 ≤ j ≤ n − 1). The
next line contains j different integers mi separated by single
spaces — the numbers of the cities that Byterider would like
to visit (1 ≤ mi ≤ n, mi 6= k).

Output

Output the length of the shortest Byterider journey.

Example

journey.in journey.out
4 2
1 2 1
4 2 2
2 3 3
2
1 3

5

Problem D. Puzzle
Input file: puzzle.in
Output file: puzzle.out
Time limit: 1 second
Memory limit: 64 megabytes

The king of Byteland has received a gift, a jigsaw puzzle. The
puzzle consists of a board of size n × n. The field in the i-th
row and j-th column (1 ≤ i, j ≤ n) has coordinates (i, j) and
contains a piece with the number p(i, j), 1 ≤ p(i, j) ≤ n2. Each
of the numbers 1 . . . n2 appears on exactly one of the pieces.

To solve the puzzle, you have to put the pieces in order, so
that for each 1 ≤ i, j ≤ n the field (i, j) contains the piece with
number j + (i − 1)n. The following moves are allowed to solve
the puzzle:

• a cyclic shift of all pieces in a row by a certain number of
fields to the right;

• a cyclic shift of all pieces in a column by a certain number
of fields down.

The king of Byteland managed to solve his puzzle, but he is
not sure if he would be able to solve it starting from a different
initial configuration. Help him to solve this problem.

Input

In the first line of the input file there is one integer n — the
size of the board side (2 ≤ n ≤ 200). The following n lines
contain the description of the initial configuration. The line
i + 1 contains n integers p(i, 1), p(i, 2), . . . p(i, n) separated by
single spaces.

Output

If there is no solution, the program should write to the output
file only one line containing only one word “NO”.

If a solution exists, the first line should contain one integer m —
the number of moves leading to the solution of the puzzle. The
number of moves in your solution must not exceed 400 000. The
following m lines should contain the descriptions of the moves,
one move per line. Each such line should consist of a letter ‘R’
(for shifting a row to the right) or ‘C’ (for shifting a column
down), a space, and two integers: k and l separated by a space;
1 ≤ k ≤ n, 1 ≤ l ≤ n − 1. A line containing “R k l” describes
a cyclic shift of the k-th row by l fields to the right. Similarly
a line containing “C k l” describes a cyclic shift of the k-th
column by l fields down.

If there are several possible solutions, your program should out-
put anyone of them.

Example

puzzle.in puzzle.out
4
4 6 2 3
5 10 7 8
9 14 11 12
13 1 15 16

2
C 2 1
R 1 3

Problem E. Race
Input file: race.in
Output file: race.out
Time limit: 2 seconds
Memory limit: 64 megabytes

The mayor of Plovdiv decides to arrange a car race on the
streets of Plovdiv to show that the streets of the city are really
suitable for fast driving. He has to choose the route for the
race, so this route should be as fast as possible. After talking
with his advisors, he came up with the following constraints.
The race must start and finish at the crossroad where the City
Hall is. The only permitted turns along the track are left turns
(to make a left turn means to change driving direction to the
left in respect to the current forward direction by any angle
greater than or equal to 0 and strictly less than 180 degrees).
Moreover, among all routes, satisfying the above conditions, the
chosen route should have the following property: the length of
the shortest street from the route should be as long as possible.

The city of Plovdiv has N crossroads and M two-way streets
connecting them. The crossroads are described with their two
coordinates in the plane and numbered from 1 to N in the or-
der they are given in the input. The City Hall is situated at

Page 2 of 4



SPb NRU ITMO Training 02 — Balcan OI 2004, CEOI 2004
September 14, 2013

the crossroad with number 1. The streets are straight line seg-
ments starting at one crossroad and finishing at another. The
length of a street is equal to the Euclidean distance between
its two ends. A street is described by the numbers of its two
ends. There is no more than one street between any two cross-
roads. The streets do not intersect themselves except at their
endpoints.

Write a program to find which route, among all possible routes
in the city, starts and finishes at crossroad 1 and at each cross-
road this route goes either straightforward or makes a left turn,
and the shortest street in this route is as long as possible. The
route cannot pass twice in the same direction in the same street.

Input

The first line of the input file contains the two numbers N and
M , 3 ≤ N ≤ 2000, 5 ≤ M ≤ 25000, separated by a space.
Each of the next N lines contains coordinates X and Y of the
given crossroads, separated by a space. These coordinates are
integers from the interval [−10000, 10000]. Last M lines de-
scribe the streets. Each of these lines contains two crossroads’
numbers, which are connected by a street.

Output

The output file should contain a description of the route. The
first line should contain the count of the crossroads in the route
(twice including crossroad 1 as the first and the last in the
route). The next line should contain the numbers of the cross-
roads along the route (starting and ending with crossroad 1) in
the proper order, separated by a space.

There is at least one solution of the task. If there is more than
one solution, output an arbitrary one of them.

Example

race.in race.out
5 6
1 0
2 1
1 1
0 1
1 2
1 2
2 5
1 4
5 4
2 3
4 3

5
1 2 5 4 1

Problem F. Sweets
Input file: sweets.in
Output file: sweets.out
Time limit: 1 second
Memory limit: 64 megabytes

John has got n jars with candies. Each of the jars contains a
different kind of candies (i.e. candies from the same jar are of
the same kind, and candies from different jars are of different
kinds). The i-th jar contains mi candies. John has decided to
eat some of his candies. He would like to eat at least a of them
but no more than b. The problem is that John can’t decide

how many candies and of what kinds he would like to eat. In
how many ways can he do it?

Input

The first line of input contains three integers: n, a and b, sep-
arated by single spaces (1 ≤ n ≤ 10, 0 ≤ a ≤ b ≤ 10 000 000).
Each of the following n lines contains one integer. Line i + 1
contains integer mi — the amount of candies in the i-th jar
(0 ≤ mi ≤ 1 000 000).

Output

Let k be the number of different ways John can choose the
candies to be eaten. The first and only line of output should
contain one integer: k mod 2004 (i.e. the remainder of k di-
vided by 2004).

Example

sweets.in sweets.out
2 1 3
3
5

9

Problem G. Team Selection
Input file: team.in
Output file: team.out
Time limit: 2 seconds
Memory limit: 64 megabytes

The Interpeninsular Olympiad in Informatics is coming and
the leaders of the Balkan Peninsula Team have to choose the
best contestants on the Balkans. Fortunately, the leaders could
choose the members of the team among N very good contes-
tants, numbered from 1 to N (3 ≤ N ≤ 500000). In order
to select the best contestants the leaders organized three com-
petitions. Each of the N contestants took part in all three
competitions and there were no two contestants with equal re-
sults on any of the competitions. We say that contestant is
better than another contestant when is ranked before in all
of the competitions. A contestant A is said to be excellent if no
other contestant is better than A. The leaders of the Balkan
Peninsula Team would like to know the number of excellent
contestants.

Write a program, which for given N and the three competitions
results, computes the number of excellent contestants.

Input

The input data are given as four lines. The first line contains
the number N . The next three lines show the rankings for the
three competitions. Each of these lines contains the identifica-
tion numbers of the contestants, separated by single spaces, in
the order of their ranking from first to last place.

Output

The output file should contain one line with a single number
written on it: the number of the excellent.

Page 3 of 4



SPb NRU ITMO Training 02 — Balcan OI 2004, CEOI 2004
September 14, 2013

Example

team.in team.out
3
2 3 1
3 1 2
1 2 3

3

10
2 5 3 8 10 7 1 6 9 4
1 2 3 4 5 6 7 8 9 10
3 8 7 10 5 4 1 2 6 9

4

Problem H. Trips
Input file: trips.in
Output file: trips.out
Time limit: 5 seconds
Memory limit: 64 megabytes

In the forthcoming holiday season, a lot of people would like to
go for an unforgettable travel. To mostly enjoy their journey,
everyone wants to go with a group of friends. A travel agency
offers several trips. A travel agency offers group trips, but for
each trip, the size of the group is limited: the minimum and
maximum number of persons are given. Every group can choose
only one trip. Moreover, each trip can be chosen by only one
group. The travel agency has asked you for help. They would
like to organize as many trips as possible. Your task is to match
groups of people and trips in such a way, that the maximum
number of trips can be organized.

Input

The first line of input contains two integers: n and m separated
by single space, 1 ≤ n ≤ 400000, 1 ≤ m ≤ 400000; n is the
number of groups and m is the number of trips. The groups
are numbered from 1 to n, and the trips are numbered from 1
to m. The following n lines contain group sizes, one per line.
Line i + 1 contains integer si — the size of the i-th group,
1 ≤ si ≤ 109. The following m lines contain trip descriptions,
one trip per line. Line n + j + 1 contains two integers: lj and
uj , separated by single space. lj is the minimum, and uj is the
maximum size of a group for which the trip can be arranged,
1 ≤ lj ≤ uj ≤ 109.

Output

The first line of output should contain one integer k ≥ 0 — the
maximum number of trips that can be arranged. The following
k lines should contain the description of the matching. Each of
these lines should contain a pair of integers separated by single
space: the number of a group and the number of a trip. There
can be many answers and your program may print anyone of
them.

Example

trips.in trips.out
5 4
54
6
9
42
15
6 6
20 50
2 8
7 20

3
2 1
3 4
4 2

Problem I. Two Sawmils
Input file: two.in
Output file: two.out
Time limit: 1 second
Memory limit: 64 megabytes

There are n old trees planted along a road that goes from the
top of a hill to its bottom. Local government decided to cut
them down. In order not to waste wood each tree should be
transported to a sawmill.

Trees can be transported only in one direction: downwards.
There is a sawmill at the lower end of the road. Two additional
sawmills can be built along the road. You have to decide where
to build them, as to minimize the cost of transportation. The
transportation costs one cent per meter, per kilogram of wood.

Input

The first line of the input contains one integer n — the number
of trees (2 ≤ n ≤ 20 000). The trees are numbered 1, 2, . . . , n,
starting from the top of the hill and going downwards. Each of
the following n lines contains two positive integers separated by
single space. Line i + 1 contains: wi — weight (in kilograms)
of the i-th tree and di — distance (in meters) between trees
number i and i + 1, 1 ≤ wi ≤ 10 000, 0 ≤ di ≤ 10 000. The
last of these numbers, dn, is the distance from the tree number
n to the lower end of the road. It is guaranteed that the total
cost of transporting all trees to the sawmill at the end of the
road is less than 2 000 000 000 cents.

Output

The first and only line of output should contain one integer:
the minimum cost of transportation.

Example

two.in two.out
9
1 2
2 1
3 3
1 1
3 2
1 6
2 1
1 2
1 1

26

Page 4 of 4


