
SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

Problem A. Aerodynamics

Input file: aerodynamics.in

Output file: aerodynamics.out

Bill is working in a secret laboratory. He is developing missiles
for national security projects. Bill is the head of the aerodynamics
department.

One surprising fact of aerodynamics is called Whitcomb area rule.
An object flying at high-subsonic speeds develops local supersonic
airflows and the resulting shock waves create the effect called wave
drag. Wave drag does not depend on the exact form of the object,
but rather on its cross-sectional profile.

Consider a coordinate system with OZ axis pointing in the direction
of object’s motion. Denote the area of a section of the object by a
plane z = z0 as S(z0). Cross-sectional profile of the object is a
function S that maps z0 to S(z0). There is a perfect aerodynamic
shape called Sears-Haack body. The closer cross-sectional profile of
an object to the cross-sectional profile of Sears-Haack body, the less
wave drag it introduces. That is an essence of Whitcomb area rule.

Bill’s department makes a lot of computer simulations to study mis-
sile’s aerodynamic properties before it is even built. To approximate
missile’s cross-sectional profile one takes samples of S(z0) for integer
arguments z0 from zmin to zmax.

z

x

y

1

2

3

4

5

6

7

8

9

Your task is to find the area S(z0) for each integer z0 from zmin to
zmax, inclusive, given the description of the missile. The description
of the missile is given to you as a set of points. The missile is the
minimal convex solid containing all the given points. It is guaranteed
that there are four points that do not belong to the same plane.

Input

The first line of the input file contains three integer numbers: n,
zmin and zmax (4 ≤ n ≤ 100, 0 ≤ zmin ≤ zmax ≤ 100). The
following n lines contain three integer numbers each: x, y, and z
coordinates of the given points. All coordinates do not exceed 100
by their absolute values. No two points coincide. There are four
points that do not belong to the same plane.

Output

For each integer z0 from zmin to zmax, inclusive, output one floating
point number: the area S(z0). The area must be precise to at least
5 digits after decimal point.

Sample input and output

aerodynamics.in aerodynamics.out

9 0 5

0 0 5

-3 0 2

0 -1 2

3 0 2

0 1 2

2 2 0

2 -2 0

-2 -2 0

-2 2 0

16.00000

14.92000

10.08000

4.48000

1.12000

0.00000

Problem B. Blind Walk
Input file: standard input

Output file: standard output

This is an interactive problem.

Your task is to write a program that controls a robot which blindly
walks through a maze. The maze is n × m (1 ≤ n, m ≤ 30) rect-
angular grid that consists of square cells. Each cell is either empty
or blocked. All cells on the border of the maze are blocked. The
robot starts in an empty cell. It can move south, west, north, or east
to an adjacent empty cell. The robot is blind and has only bump
sensors, so when it attempts to move it can either succeed or bump
into blocked cell and fail.

The robot has to visit all empty cells in the maze. All cells are
guaranteed to be reachable.

The picture shows sample maze where blocked cells are, filled and
initial robot’s location is designated with a circle.

Interaction protocol

The program must write to the standard output one line with robot’s
action and wait for a line in the standard input with a response,
then write next action and read next response, and so on until all
empty cells in the maze had been visited. The program must exit
only when all cells have been visited. Empty cells may be visited
multiple times. It is acceptable to move even after all cells had been
visited.

Output

Each line of the standard output represents robot’s action. It is one
of the following five strings: SOUTH, WEST, NORTH, EAST, or DONE. DONE
must be printed when the robot has visited all empty cells. After
printing DONE your program must exit. You must flush standard
output after printing each action.

Input

Each line of the standard input represents response on robot’s action.
It is either a string EMPTY if robot has successfully moved in the
specified direction to an adjacent cell or a string BLOCKED if robot’s
movement has failed because the corresponding adjacent cell was
blocked.

Page 1 of 7

SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

Sample input and output

standard output standard input

NORTH

EAST

SOUTH

EAST

SOUTH

WEST

SOUTH

WEST

NORTH

WEST

WEST

NORTH

EAST

NORTH

DONE

BLOCKED

BLOCKED

EMPTY

BLOCKED

BLOCKED

EMPTY

BLOCKED

BLOCKED

EMPTY

EMPTY

BLOCKED

BLOCKED

EMPTY

BLOCKED

Problem C. Clock
Input file: clock.in

Output file: clock.out

One famous Russian architect plans to build a new monumental
construction. It will be a huge clock that indicates the time from
the beginning of the universe.

The face of this clock contains hands, moving at constant speeds.
They are numbered from 1 to n from the fastest to the slowest one.
The fastest hand makes one revolution per minute (60 seconds).
Each next hand moves slower than previous, the (i + 1)-th hand
makes one revolution when the i-th hand makes di revolutions.

The setting mechanism of this clock is very simple. You can take a
hand by the handle, located on its end, and move it in any direction.
When you move the hand, slower hands are moving in proportion
to their usual speeds, and faster hands are not moving. Remember
that hands are huge, so setting this clock is a hard job.

Consider an example with three hands: a second hand, a minute
hand, and an hour hand. Their lengths are 5, 15 and 10 meters
respectively. You want to set the clock from 2:30 to 6:00 (fig. 1).
The easiest way to do it is to rotate the minute hand 180◦ clockwise,
and then move the hour hand 90◦ clockwise. The total distance you
moved the handles of the hands is approximately 62.83 meters.

Fig. 1. Setting clock from 2:30 to 6:00.

Your task is to write a program that finds the way to set the clock
that minimizes the total distance you have to move the handles.

Input

The first line of the input file contains one integer n — the number of
hands (0 < n ≤ 50). The second line contains n−1 integer numbers
d1, d2, . . . , dn−1 (2 ≤ di ≤ 106). The third line contains n integer
numbers l1, l2, . . . , ln (1 ≤ li ≤ 106) — lengths of clock hands. Next
two lines contain two non-negative integer numbers (one number per
line): time indicated by the clock and the actual time that should
be set. Both times are measured in seconds from the beginning of
the universe and are less than 263.

Output

Print the minimal possible total distance you have to move the han-
dles. The answer must be precise to at least 4 digits after decimal
point.

Sample input and output

clock.in clock.out

3

60 12

5 15 10

52200

453600

62.831853072

Problem D. Drive through MegaCity

Input file: drive.in

Output file: drive.out

MegaCity of the future is a rectangular grid of streets. Each in-
tersection has integer Cartesian coordinates x and y. To get from
intersection a with coordinates xa, ya to intersection b with coordi-
nates xb, yb you need to drive exactly |xa − xb| + |ya − yb| blocks.
Usually, it takes 10 time units to drive one block, so one can easily
compute the time it takes to get from a to b. However, traffic jams
that occur in MegaCity turn estimation of minimal driving time into
a complex problem that you have to solve.

Traffic jams in MegaCity affect a rectangular area that is specified
by coordinates of its bottom-left and top-right corners. The time
to travel one block in the traffic jam is specified. All streets that
are strictly inside the rectangular region are affected by the traffic
jam. Sometimes, it is better to drive around the traffic jams to save
time, but sometimes it is better to drive through some traffic jams
as shown in the example — 17 blocks are driven outside of traffic
jams, taking 10 time units per block, and 2 blocks in the light traffic
jam with 11 time units per block.

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

a

b

Input

The first line of the input file contains four integer numbers xa,
ya, xb, and yb — coordinates of the start and finish intersections.
The second line of the input file contains a single integer number
n (0 ≤ n ≤ 1000) which specifies the number of traffic jams. The
following n lines describe traffic jams. Each traffic jam is described
by five integer numbers x1,i, y1,i, x2,i, y2,i and ti, where first four
numbers are coordinates of the bottom-left and top-right corners of
the jammed area (x1,i < x2,i, y1,i < y2,i), and ti (10 < ti ≤ 108)

Page 2 of 7

SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

is the time it takes to travel one block inside this traffic jam. All
coordinates in the input file are from 0 to 108 inclusive. Areas of
traffic jams neither intersect nor touch each other. Start and finish
points are different and do not lie inside nor on the border of any
traffic jam.

Output

Write to the output file a single integer — the minimal driving time
from intersection a to intersection b.

Sample input and output

drive.in drive.out

1 6 15 3

4

2 1 3 7 44

5 2 10 4 33

8 5 11 9 22

12 1 14 8 11

192

Problem E. Exclusive Access
Input file: exclusive.in

Output file: exclusive.out

One important problem in concurrent programming is to ensure ex-
clusive access to shared resources by multiple threads. It is also
known as Mutual Exclusion protocol. A code that needs to be pro-
tected from concurrent execution is called critical section (CS). In
order to coordinate access to CS, application threads use a set of
shared variables to send information to each other. These shared
variables are distinct from all the variables that are used by appli-
cation code. In practice, mutual exclusion protocol is implemented
as two methods — enterCS and exitCS. When application needs to
execute some code in CS, it calls enterCS, then executes CS, then
calls exitCS.

For theoretical analysis of mutual exclusion protocol one must con-
sider running application as a whole. Each thread of application is
represented as an infinite loop that repeatedly performs some work
unrelated to CS, which is called non-critical section (NCS), then
calls enterCS, then executes CS, then calls exitCS, then the loop
repeats. The code inside NCS and CS is not relevant; it is consid-
ered to perform no operations related to the protocol and does not
modify shared variables used by the protocol.

We consider a system with two concurrently running threads.
Threads use a set of shared one-bit variables to implement mutual
exclusion protocol. Each variable can store a value of zero or one
that can be read or written by a single instruction. Shared vari-
ables are initialized to zero. Each thread has a local pointer to the
instruction (IP) that it is going to execute next. Execution starts
from the top of the code. During each step of execution one of the
threads is arbitrarily chosen, it executes one instruction, and then
changes its IP to the next instruction to execute. This infinite se-
quence of steps is called history. A history is called legal if either
both threads execute infinitely many steps or just one thread does,
while the other thread, having taken a finite number of steps, stops
with IP at NCS.

The table below contains several algorithms in pseudo-code that at-
tempt to implement mutual exclusion protocol. In this pseudo-code
id is 0 for the first thread and 1 for the second. Variables want [0],
want [1], and turn are shared between threads to implement mu-
tual exclusion protocol. Lines marked with “+” implement enterCS,
lines marked with “-” implement exitCS. Lines NCS() and CS() are
placeholders for some code that works inside non-critical and critical
sections respectively and is not relevant for this problem.

Algorithm 1 Algorithm 2 Algorithm 3

loop forever

NCS()

+ loop while

+ (turn == 1 - id)

CS()

- turn <- (1 - id)

end loop

loop forever

NCS()

+ want[id] <- 1

+ loop while

+ (want[1 - id] == 1)

CS()

- want[id] <- 0

end loop

loop forever

NCS()

+ want[id] <- 1

+ turn <- (1 - id)

+ loop while

+ (want[1 - id] == 1 and

+ turn == 1 - id)

CS()

- want[id] <- 0

end loop

The task is to figure out if the given algorithm satisfies three impor-
tant properties:

• The algorithm satisfies mutual exclusion if in any legal history
CS is not executed concurrently by two threads (that is, there
is no step where IP of both threads is at CS).

• The algorithm satisfies deadlock freedom if any legal history
has infinitely many executions of CS.

• The algorithm satisfies starvation freedom if in any legal his-
tory a thread that executes infinitely many steps has infinitely
many executions of CS.

The property of mutual exclusion is trivial. The algorithm that
simply loops forever doing nothing will satisfy it. The sample algo-
rithms above all satisfy mutual exclusion, but the first two fail to
achieve deadlock freedom. The algorithm 3 (originally created by
Gary Peterson) satisfies all three properties.

Input

The input file starts with a line with two integer numbers — m1

and m2, where mi is the number of lines of code for i-th thread
(2 ≤ mi ≤ 9). It is followed by m1 lines with the code for the first
thread and m2 lines with the code for the second thread.

The code for each thread contains one instruction per line. In-
struction starts with an integer line number from 1 to mi (lines are
numbered in ascending order and are included to aid readability),
followed by instruction mnemonic, followed by a list of instruction
arguments, all separated by spaces. The last arguments of instruc-
tion represent line numbers of the next instructions to execute (NIP
— from 1 to mi). There are three variables shared between threads
— A, B, and C. Instruction mnemonics are:

• NCS — non-critical section placeholder. Its single argument is
NIP.

• CS — critical section placeholder. Its single argument is NIP.

• SET — write value to the shared variable. It has three argu-
ments v, x, and g, where v is the variable to write (A, B, or
C), x is the value to write (0 or 1), and g is NIP.

• TEST — read and test the value of the shared variable. It has
three arguments v, g0, and g1 where v is the variable to read
(A, B, or C), g0 is NIP if the value of the variable is zero, and
g1 is NIP if the value of the variable is one.

NCS and CS appear in the code for each thread exactly once. The
code may or may not represent a simple loop, but is guaranteed
to alternate executions of CS and NCS by one thread, that is, in
every legal history two executions of CS by one thread always have
NCS execution by the same thread in between and, vice versa, two
executions of NCS by one thread have CS execution by the same
thread in between.

Output

Write to the output file a string of three letters. Letters represent
properties of mutual exclusion, deadlock freedom, and starvation

Page 3 of 7

SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

freedom. Write letter Y if the corresponding property is satisfied
and N otherwise.

Sample input and output

Three samples below represent algorithms 1–3 from the problem
statement.

exclusive.in exclusive.out

4 4

1 NCS 2

2 TEST C 3 2

3 CS 4

4 SET C 1 1

1 NCS 2

2 TEST C 2 3

3 CS 4

4 SET C 0 1

YNN

5 5

1 NCS 2

2 SET A 1 3

3 TEST B 4 3

4 CS 5

5 SET A 0 1

1 NCS 2

2 SET B 1 3

3 TEST A 4 3

4 CS 5

5 SET B 0 1

YNN

exclusive.in exclusive.out

7 7

1 NCS 2

2 SET A 1 3

3 SET C 1 4

4 TEST B 6 5

5 TEST C 6 4

6 CS 7

7 SET A 0 1

1 NCS 2

2 SET B 1 3

3 SET C 0 4

4 TEST A 6 5

5 TEST C 4 6

6 CS 7

7 SET B 0 1

YYY

This is an algorithm (originally created by Leslie Lamport) that uses
just two shared bits (A and B) and satisfies mutual exclusion and
deadlock freedom, but is not free from starvation.

exclusive.in exclusive.out

5 7

1 NCS 2

2 SET A 1 3

3 TEST B 4 3

4 CS 5

5 SET A 0 1

1 NCS 2

2 SET B 1 3

3 TEST A 6 4

4 SET B 0 5

5 TEST A 2 5

6 CS 7

7 SET B 0 1

YYN

There are two trivial algorithms. First one never executes CS nor
NCS and thus guarantees mutual exclusion, but does not have dead-

lock freedom, nor starvation freedom properties. Second one loops
between NCS and CS, thus fails to achieve mutual exclusion, but is
free from deadlock and starvation.

exclusive.in exclusive.out

3 3

1 SET A 0 1

2 CS 2

3 NCS 3

1 TEST A 1 1

2 CS 2

3 NCS 3

YNN

2 2

1 CS 2

2 NCS 1

1 NCS 2

2 CS 1

NYY

Problem F. Fibonacci System

Input file: fibonacci.in

Output file: fibonacci.out

Little John studies numeral systems. After learning all about fixed-
base systems, he became interested in more unusual cases. Among
those cases he found a Fibonacci system, which represents all natural
numbers in an unique way using only two digits: zero and one. But
unlike usual binary scale of notation, in the Fibonacci system you
are not allowed to place two 1s in adjacent positions.

One can prove that if you have number N = anan−1 . . . a1F

in Fibonacci system, its value is equal to
N = an · Fn + an−1 · Fn−1 + . . . + a1 · F1, where Fk is a
usual Fibonacci sequence defined by F0 = F1 = 1, Fi = Fi−1 +Fi−2.

For example, first few natural numbers have the following unique
representations in Fibonacci system:

1 = 1F

2 = 10F

3 = 100F

4 = 101F

5 = 1000F

6 = 1001F

7 = 1010F

John wrote a very long string (consider it infinite) consisting
of consecutive representations of natural numbers in Fibonacci
system. For example, the first few digits of this string are
110100101100010011010. . .

He is very interested, how many times the digit 1 occurs in the N -th
prefix of the string. Remember that the N-th prefix of the string is
just a string consisting of its first N characters.

Write a program which determines how many times the digit 1 oc-
curs in N -th prefix of John’s string.

Input

The input file contains a single integer N (0 ≤ N ≤ 1015).

Output

Output a single integer — the number of 1s in N -th prefix of John’s
string.

Page 4 of 7

SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

Sample input and output

fibonacci.in fibonacci.out

21 10

Problem G. Giant Screen
Input file: giant.in

Output file: giant.out

You are working in Advanced Computer Monitors (ACM), Inc. The
company is building and selling giant computer screens that are
composed from multiple smaller screens. Your are responsible for
design of the screens for your customers.

Customers order screens of the specified horizontal and vertical reso-
lution in pixels and a specified horizontal and vertical size in millime-
ters. Your task is to design a screen that has a required resolution in
each dimension or more, and has required size in each dimension or
more, with a minimal possible price. The giant screen is always built
as a grid of monitors of the same type. The total resolution, size,
and price of the resulting screen is simply the sum of resolutions,
sizes, and prices of the screens it is built from.

You have a choice of regular monitor types that you can order and
you know their resolutions, sizes, and prices. The screens of each
type can be mounted both vertically and horizontally, but the whole
giant screen must be composed of the screens of the same type in
the same orientation. You can use as many screens of the chosen
type as you need.

Input

The first line of the input file contains four integer numbers rh, rv,
sh, and sv (all from 100 to 10 000 inclusive) — horizontal and vertical
resolution and horizontal and vertical size of the screen you have to
build, respectively. The next line contains a single integer number
n (1 ≤ n ≤ 100) — the number of different screen types available
to you. The next n lines contain descriptions of the available screen
types. Each description occupies one line and consists of five integer
numbers — rh,i, rv,i, sh,i, sv,i, pi (all from 100 to 10 000 inclusive),
where first four numbers are horizontal and vertical resolution and
horizontal and vertical size of i-th screen type, and pi is the price.

Output

Write to the output file a single integer — the minimal price of the
specified giant screen.

Sample input and output

giant.in giant.out

1024 1024 300 300

3

1024 768 295 270 200

1280 1024 365 301 250

1280 800 350 270 210

250

2400 2000 800 700

3

1024 768 295 270 200

1280 1024 365 301 250

1280 800 350 270 210

1260

Problem H. Hell on the Markets
Input file: hell.in

Output file: hell.out

Most financial institutions had become insolvent during financial cri-
sis and went bankrupt or were bought by larger institutions, usually
by banks. By the end of financial crisis of all the financial institu-
tions only two banks still continue to operate. Financial markets
had remained closed throughout the crisis and now regulators are
gradually opening them. To prevent speculation and to gradually
ramp up trading they will initially allow trading in only one financial
instrument and the volume of trading will be limited to i contracts
for i-th minute of market operation.

Two banks had decided to cooperate with the government to kick-
start the market operation. The boards of directors had agreed on
trading volume for each minute of this first trading session. One
bank will be buying ai contracts (1 ≤ ai ≤ i) during i-th minute
(1 ≤ i ≤ n), while the other one will be selling. They do not really
care whether to buy or to sell, and the outside observer will only
see the volume ai of contracts traded per minute. However, they do
not want to take any extra risk and want to have no position in the
contract by the end of the trading session. Thus, if we define bi = 1
when the first bank is buying and bi = −1 when the second one is
buying (and the first one is selling), then the requirement for the
trading session is that

∑n
i=1 aibi = 0.

Your lucky team of three still works in the data center (due to the
crisis, banks now share the data center and its personnel) and your
task is to find such bi or to report that this is impossible.

Input

The first line of the input file contains the single integer number n
(1 ≤ n ≤ 100 000).

The second line of the input file contains n integer numbers — ai

(1 ≤ ai ≤ i).

Output

The first line of the output file must contain “Yes” if the trading
session with specified volumes is possible and “No” otherwise. In
the former case the second line must contain n numbers — bi.

Sample input and output

hell.in hell.out

4

1 2 3 4

Yes

1 -1 -1 1

4

1 2 3 3

No

Page 5 of 7

SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

Problem I. iSharp

Input file: isharp.in

Output file: isharp.out

You are developing a new fashionable language that is not quite
unlike C, C++, and Java. Since your language should become an
object of art and fashion, you call it i# (spelled i-sharp). This name
combines all the modern naming trends and also hints at how smart
you are.

Your language caters for a wide auditory of programmers and its
type system includes arrays (denoted with “[]”), references (denoted
with “&”), and pointers (denoted with “*”). Those type constructors
can be freely combined in any order, so that a pointer to an array
of references of references of integers (denoted with “int&&[]*”) is
a valid type.

Multiple variables in i# can be declared on a single line with a very
convenient syntax where common type of variables is given first,
followed by a list of variables, each optionally followed by additional
variable-specific type constructors. For example, the following line:

int& a*[]&, b, c*;

declares variables a, b, and c with types “int&&[]*”, “int&”, and
“int&*” correspondingly. Note, that type constructors on the right-
hand sides of variables in i# bind to variable and their order is
reversed when they are moved to the left-hand side next to type.
Thus “int*& a” is equivalent to “int a&*”.

However, you discover that coding style with multiple variable dec-
larations per line is confusing and is outlawed in many corporate
coding standards. You decide to get rid of it and refactor all ex-
isting i# code to a single variable declaration per line and always
specify type constructor next to the type it refers to (instead of the
right-hand side of variable). Your task it to write such refactoring
tool.

Input

The input file contains a single line with a declaration of multi-
ple variables in i#. The line starts with a type name, followed by
zero, one, or more type constructors, followed by a space, followed
by one or more variable descriptors separated by “,” (comma) and
space, and terminated by “;” (semicolon). Each variable descriptor
contains variable name, followed by zero, one, or more type con-
structors.

Type name and variable names are distinct and consist of lowercase
and uppercase English letters from “a” to “z” or “A” to “Z”. The
line contains at most 120 characters and does not contain any extra
spaces.

Output

Write to the output file a line for each variable declared in the input
file. For each variable write its declaration on a single line in the
same format as in the input file, but with all type constructors next
to its type. Separate type with all type constructors from a variable
name by a single space. Do not write any extra spaces.

Sample input and output

isharp.in isharp.out

int& a*[]&, b, c*; int&&[]* a;

int& b;

int&* c;

Double[][] Array[]; Double[][][] Array;

Problem J. Javanese Cryptoanalysis

Input file: javanese.in

Output file: javanese.out

Javanese is the language of the people in the Central and Eastern
parts of the island of Java, Indonesia.

In 1926, a standard orthography using the English Alphabet was
created for the Javanese language. This writing system uses all
letters from A to Z. The five letters A, E, I, O, and U are vowels,
while all other letters are consonants. In Javanese words vowels
and consonants always alternate. This property is quite useful when
deciphering encrypted Javanese texts.

A text s consists of words, each word contains only capital letters.
Let’s call text s legitimate if in each word of s vowels and consonants
alternate (no two vowels and no two consonants are located next to
each other).

A simple substitution cipher is applied to a text s. That is, a bijec-
tion f : A → A is chosen, where A is the set of capital letters. The
encoded text t is obtained from s by substituting each letter c with
f(c).

You’re given the encoded text t. Find any legitimate text s that can
be encoded as t, or detect that there is no such legitimate s.

Input

The input file contains the encoded text t, a list of words separated
by spaces and/or line breaks. Each word consists only of capital
letters (A to Z).

The input file contains no more than 100 000 characters.

Output

If the text t cannot be an encoded legitimate text, output only one
word impossible.

Otherwise, output any legitimate text s that can be encoded into t.
Separate words of s with spaces and/or line breaks. All letters in s
should be capital.

Sample input and output

javanese.in javanese.out

O RISK LIP FOCUS LUCKY A CODE FOR VALID FILES

NEERC impossible

Problem K. KINA Is Not Abbreviation
Input file: kina.in

Output file: kina.out

When introducing new terms consisting of several words, it is useful
to use abbreviations. An abbreviation is a word that consists of the
first letters of several consecutive words.

An abbreviation is called unambiguous if the following two condi-
tions are satisfied:

• It corresponds to exactly one sequence of words in a given
text (although this sequence can appear in the text more than
once);

• It does not appear in the text by itself.

For example, in the text “A recursive acronym KINA means "KINA

is not abbreviation"”, strings “ARA” and “K” are unambiguous
abbreviations, strings “A” and “KINA” are ambiguous abbreviations,
and strings “RAA” and “KNA” are not abbreviations.

To introduce an abbreviation in a text, it is placed in parentheses
right after the sequence of words it corresponds to. Future occur-
rences of this sequence of words can be replaced by the abbrevia-

Page 6 of 7

SPb NRU ITMO Training 07
NEERC 2008, October 8, 2013

tion. In the example text above, introduction of the abbreviation
“K” produces the following text: “A recursive acronym KINA (K)

means "K is not abbreviation"”.

If two occurrences of a sequence of words overlap, only one of them
can be replaced by the abbreviation. Words in a sequence are sep-
arated by one or more non-alphabetic characters. Comparison of
words is case-insensitive. For example, “i18n” is an occurrence of
the word sequence “I n”.

The effectiveness of an abbreviation is the decrease in the number of
letters after introduction of this abbreviation. Only letters are taken
into account; spaces, parentheses and all other non-alphabetical
characters do not count.

Given a text, find an unambiguous abbreviation with the maximum
effectiveness.

Input

The input file contains a text with at most 4 000 characters. The
text contains only characters with ASCII codes 32 (space) to 126
(“~”), 13 (carriage return), and 10 (line feed).

Output

If there is no unambiguous abbreviation with positive effectiveness,
then the output file should contain the single number 0.

Otherwise, the first line of the output file should contain the effec-
tiveness of the optimal abbreviation. The second line should contain
the unambiguous abbreviation itself. If there are multiple unambigu-
ous abbreviations with the maximum effectiveness, output any one
of them.

Sample input and output

kina.in kina.out

This problem name is "KINA is not abbreviation".

Once again: KINA is not abbreviation.

11

NA

To be or not to be: that is the question. 0

Here is the chorus of the song "Jingle Bells":

Jingle bells, jingle bells,

Jingle all the way;

Oh what fun it is to ride

In a one-horse open sleigh.

16

JB

In the first example, the optimal abbreviations are “NA” and “INA”.
In the third example, the optimal abbreviations are “JB” and “BJ”.

Page 7 of 7

