
ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem A. TV
Input �le: stdin

Output �le: stdout

Time limit: 2 seconds
Memory limit: 256 megabytes
Feedback:

Recently Berland scientists discovered new �eld to research. They explore how to organize TV schedule to
maximize happiness of viewers. They proved that a change of happiness after viewing a TV-show depends
only on this show and the previous show.

Formally, each TV-show is characterized by three values: ti, ai and bi, where ti is the type of the i-th
TV-show, ai and bi are how happiness changes after viewing the i-th show. If the previous TV-show exists
(i.e. the current show is not the �rst) and the previous show type equals to the type of the current show
then happiness is increased by ai. Otherwise after viewing the i-th TV-show happiness is increased by bi.

There are n TV-shows in total numbered from 1 to n. The problem is to choose some TV-shows and order
them in a sequence in a way to maximize happiness after viewing all of them one after another. Actually
some TV-shows do not increase happiness, if quality of a TV-show is very low it can have negative a
and/or b values. It is possible to choose empty set of TV-shows, in that case happiness will no be changed.
Each show can be used at most once.

Input

The �rst line contains integer n (1 6 n 6 600) � the number of TV-shows. Each of the following n lines
describes one show. The i-th line contains three integers: ti, ai, bi (1 6 ti 6 n; |ai|, |bi| 6 105) � the type
and the values of the i-th show.

Output

The output should contain two lines. Output two integer numbers c and k in the �rst line, where c �
maximal happiness change after viewing subset of shows in an appropriate order, k (0 6 k 6 n) � the
number of shows in the optimal subset. Output the sequence of TV-shows in the order that maximizes
happiness in the second line. Formally, output k indices f1, f2, . . . , fk (1 6 fj 6 n), where f1 is the �rst
show to be shown, f2 is the second show to be shown, and so on. If there are many optimal solutions, any
is acceptable.

Examples

stdin stdout

4

1 10 5

1 5 10

2 -1 -1

3 5 1

21 3

4 2 1

8

2 3 7

2 5 2

5 -1 -1

2 10 9

4 -10 10

4 -10 10

4 -10 10

4 -10 10

60 8

8 4 2 7 1 6 3 5

Page 1 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem B. Travelling Camera Problem

Input �le: stdin

Output �le: stdout

Time limit: 4 seconds
Memory limit: 256 megabytes
Feedback:

Programming competitions become very popular in Berland. Now Berland Broadcasting Corporation
(BBC) plans to organize a TV broadcast of the All-Berland Regional Contest. The contest will be in a
narrow hall stretched from the left to the right. BBC puts a long straight rail with a camera on it along
the hall. The rail starts from the left wall and goes along the hall to the right wall.

Not every position of the camera on the rail is suitable for shooting. The cameraman has chosen m
shooting positions on the rail: c1, c2, . . . , cm, where ci is the distance (in meters) from the i-th position to
the left wall. Initially the camera will be at the position c1.

The reporter has prepared the plan showing how she will move tomorrow. She will move only along a
line parallel to the rail on the distance 1 meter from the rail. So each her position is de�ned by a single
number x � the distance (in meters) from the left wall.

The coverage will consist of n scenes. The �rst scene will be at the position x1, so the reporter will start
the live coverage there. The second scene will be at the position x2, so she will move from x1 to x2 between
the scenes. The third scene will be at the position x3 and so on. In total the reporter will successively
visit n positions x1, x2, . . . , xn, the j-th scene will be at xj .

For sure it is a bad idea to shoot the reporter if she is too far from the camera. It should be at most r
meters to the reporter at the moments of scenes.

Write a program to �nd the minimum total distance the camera will move tomorrow. You may assume
that both the camera and the reporter move only along their lines, the maximum speed of the camera is
enough to keep up with the reporter.

Input

The �rst line of the input contains three integer numbers m (2 6 m 6 3 · 105), n (2 6 n 6 3 · 105), r
(1 6 r 6 1000), where m is the number of positions where the camera can shoot, n is the number of
scenes and r is the maximum distance between the camera and the reporter in the moments of scenes.

The second line contains valid camera positions: m real numbers c1, c2, . . . , cm (0 6 ci 6 106). The
numbers are given with exactly one digit after the decimal point. They are given in the strictly increasing
order (ci < ci+1 for each 1 6 i < m).

Page 2 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

The third line contains positions of scenes in the chronological order: n real numbers x1, x2, . . . , xn
(0 6 xj 6 106). The numbers are given with exactly one digit after the decimal point. These numbers are
not necessarily distinct.

It is guaranteed that it is possible to �nd at least one valid camera position for each scene.

Output

Print a single real number with at least one digit after the decimal point � the minimum total distance
the camera needs to move to shoot all the scenes.

Examples

stdin

4 3 4

10.0 20.0 30.0 40.0

31.0 41.0 20.0

stdout

50.0

stdin

5 11 3

2.1 6.0 8.2 11.0 13.3

4.5 7.5 3.5 7.9 10.7 13.8 12.6 9.0 6.0 5.5 10.5

stdout

11.7

stdin

6 8 4

1.7 3.2 4.7 6.2 9.2 15.1

3.5 8.2 6.0 4.9 3.2 6.8 7.1 6.0

stdout

3.0

Note

In the �rst example to shoot the �rst scene the camera will move to the position c3 = 30 from the initial
position c1 = 10. To shoot the second scene it will move to the position c4 = 40. Finally, to shoot the
third scene it will move to the position c2 = 20. The total distance the camera will move is 50.

Page 3 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem C. Equivalent Cards

Input �le: stdin

Output �le: stdout

Time limit: 1 second
Memory limit: 256 megabytes
Feedback:

Jane is playing a game with her friends. They have a deck of round cards of radius 100. Each card has a
set of disjoint rectangles strictly within the bounding circle. The rectangles' vertices and the card center
have integer coordinates. However, the rectangles' edges are not necessarily parallel to the axes. The value
of a card depends on the rectangles in it and equals the sum of areas of all its rectangles. The cards are
equivalent if they have same values.

The rules are simple. Each player is given a card in the beginning. Then they turn the cards face-up. If
any player can spot another player's card equivalent to their own card, the player who �rst noticed the
equivalency gives their cards to another player and draws a new card from the deck face-up. The game
ends when there are no equivalent cards among players, or when a player needs to draw a card, but the
deck is empty. The player with the least number of cards wins.

Of course, Jane never cheats. She also believes that her friends don't cheat as well. But the game is so
dynamic, that there is no time to verify if some cards are equivalent, i.e. have the same total area of
rectangles. So, if somebody makes a mistake and claims that two cards are equivalent while they are not,
other players may leave it unnoticed and keep playing.

To avoid this, Jane decided to use her web-camera and write a program to �nd equivalent cards. She noticed
that cards on the pictures from the camera taken under some angle look like ellipses and rectangles look
like parallelograms, but she is not good at geometry. Also the images are scaled, shifted and rotated, so
the problem seems to be too hard to Jane. She asked you to write an algorithm to �nd equivalent cards.

Fortunately, you know a good image processing library which does the hardest work of �nding �gures for
you. Your task is, given the library output, �nd all equivalence classes and for each card tell which class
it belongs to. An equivalence class is a set of cards having the same sum of areas of rectangles.

Input

The �rst line of the input contains n (1 6 n 6 100), where n is the number of pictures. Each picture
contains a single card in it.

Then n descriptions of pictures follow. The description of a picture consists of several lines. The �rst
two lines of the description specify an ellipse � a card boundary on the picture. The �rst line contains
coordinates of two most distant opposite points on the ellipse (any pair of opposite points in case of a
tie). The second line contains the coordinates of two closest opposite points on the ellipse (any pair of
opposite points in case of a tie), the distance between them is at least 1. These four points completely
determine the ellipse. The following line contains ri (1 6 ri 6 4) � the number of rectangles on the card.
The following ri blocks contain the coordinates of four points, a pair of coordinates per line. Each point
is a corner of a corresponding parallelogram on the picture in the clockwise or counter-clockwise order.

All coordinates are �oating point numbers between -1000 and 1000, inclusively. They are given with an
accuracy of exactly 8 digits after the decimal point.

Output

Print the only line containing the sequence f1, f2, . . . , fn describing the equivalence classes. It should be
true that fi = fj if and only if the i-th and the j-th cards are equivalent. You may use any integer values
between 1 and 100 inclusive.

Page 4 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Examples

stdin

3

-10.00000000 0.00000000 10.00000000 0.00000000

0.00000000 -10.00000000 0.00000000 10.00000000

2

5.00000000 5.00000000

5.00000000 6.00000000

6.00000000 6.00000000

6.00000000 5.00000000

3.00000000 2.00000000

3.00000000 1.00000000

4.00000000 1.00000000

4.00000000 2.00000000

-8.00000000 -6.00000000 8.00000000 6.00000000

6.00000000 8.00000000 -6.00000000 -8.00000000

1

1.00000000 0.00000000

0.00000000 1.00000000

-1.00000000 0.00000000

0.00000000 -1.00000000

-10.00000000 0.00000000 10.00000000 0.00000000

0.00000000 -5.00000000 0.00000000 5.00000000

1

1.00000000 1.00000000

0.00000000 1.00000000

0.00000000 -1.00000000

1.00000000 -1.00000000

stdout

1 1 2

Note

You can assume that the perspective e�ect on pictures from the camera is negligible. Thus, each picture
of a card is the card's orthogonal projection onto a plane.

Page 5 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem D. Grumpy Cat

Input �le: stdin

Output �le: stdout

Time limit: 1 second
Memory limit: 256 megabytes
Feedback:

This problem is a little bit unusual. Here you are to implement an interaction with a testing system. That
means that you can make queries and get responses in the online mode. Please be sure to use the stream
�ushing operation after each query's output in order not to leave part of your output in some bu�er. For
example, in Ð¡++ you've got to use the fflush(stdout) function, in Java � call System.out.flush(),
and in Pascal � flush(output).

Fall is coming and it's time to elect a new governor in Cattown. After looking at the results of the past
elections the citizens decided to nominate a new candidate � Grumpy Cat. They said, all the previous
governors used to spend the Cattown's budget on their own needs and did nothing helpful for the town.
Grumpy Cat, they said, can't steal more money than he needs to feed himself.

The administration of Cattown refused to register Grumpy as a new candidate and it caused a lot of
discontent. People organized the biggest demonstration in the history of Cattown.

Your friend Eugene is a correspondent of a local newspaper. He has a work assignment to talk to
demonstrants to understand their main demands. After talking with several people Eugene realized that
each demonstrant either wants Grumpy Cat to be the new governor or doesn't want Grumpy Cat to be a
registered candidate or just wants to take part in the demonstration and doesn't have any requirements
at all. Let's call these 3 types of people grumpy-lovers, grumpy-haters and grumpy-neutral respectively. It
is known that there is at least one grumpy-lover and at least one grumpy-hater among the demonstrants.

Eugene decided to �nd a type of each demonstrant. He can choose a group of demonstrants and ask them
for a number of Grumpy Cat supporters among the group. The people of Cattown don't like journalists,
reporters and correspondents. Each time Eugene asks a group of people, they proceed as follows:

1. They talk to each other to understand who is who there. For sure, all grumpy-lovers are counted as
Grumpy Cat supporters and grumpy-haters are not.

2. If there are more grumpy-lovers than grumpy-haters in this group, all grumpy-neutrals express
support of Grumpy Cat at the time of this survey.

3. If there are more grumpy-haters than grumpy-lovers in this group, all grumpy-neutral people do not
support Grumpy Cat at the time of this survey.

4. If there are equal numbers of grumpy-haters and grumpy-lovers in this group, each grumpy-neutral
demonstrant at the time of this survey decides to support or not to support independently on his
own account.

5. After all grumpy-neutral people decide their position regarding Grumpy Cat, somebody tells the
correspondent the number of supporters.

A fact that a grumpy-neutral person has supported or hasn't supported Grumpy Cat doesn't a�ect its
decision in the future. Eugene can think that the surveys are completely independent.

Eugene doesn't have much time to do too many surveys. He can do at most b2πn3 c surveys, where π is
the ratio of a circle's circumference to its diameter and bxc is x rounded down. It seems too di�cult for
him! Help him and write a program to interact with demonstrants to �nd the type of each demonstrant.
Eugene knows that there is at least one grumpy-lover and there is at least one grumpy-hater among the
demonstrants.

Page 6 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Input

To read answers to the queries your program should use standard input.

The input starts with a line containing a positive integer t � the number of testcases in the test.

Each testcase starts with a line containing a single integer n (2 6 n 6 100) � the number of demonstrants.
The following lines will contain one integer each � the number of Grumpy Cat supporters according to
the preceding survey.

The total number of demonstrants in all testcases in the test doesn't exceed 1000.

Output

The program should use the standard output to print queries. Each query describes a single survey. It
should contain exactly two lines: the �rst line should contain g (1 6 g 6 n) � the number of demonstrants
in an interviewed group, the second line should contain g distinct positive integer numbers t1, t2, . . . , tg
(1 6 ti 6 n) � the numbers of the demonstrants in the group. The demonstrants are numbered from 1
to n.

After your program found the types of all the demonstrants it should print exactly two lines: the �rst line
should contain the only integer -1, the second line should contain exactly n integer numbers f1, f2, . . . , fn
(1 6 fi 6 3), where fi = 1 if the i-th demonstrant is a grumpy-lover, fi = 2 if the i-th demonstrant is a
grumpy-hater and fi = 3 in case of the i-th demonstrant is grumpy-neutral.

After the output of each line your program should execute the flush operation. Use single space to
separate integers in a line. Each line should end with end-of-line.

The program should write queries for the succeeding testcase after printing two lines described in the
second paragraph for the previous testcase. The program should terminate normally after the last testcase.

Examples

stdin stdout

2

3

2

1

0

5

0

3

3

1 2 3

3

1 2 3

1

2

-1

1 2 3

3

2 4 3

3

5 3 1

-1

1 2 3 2 3

Note

The example illustrates only the format of interaction, you can assume that the correct answers in the
example are just guessed.

Page 7 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem E. Scienti�c Battalion
Input �le: stdin

Output �le: stdout

Time limit: 5 seconds
Memory limit: 256 megabytes
Feedback:

Colonel Kruglyakovski always follows modern tendencies. Recently he decided to organize scienti�c
battalion in his army. Huge amount of work has been done to �nd the best of the bests. And now
colonel has n clever soldiers standing in front of him in a row. So almost everything is ready for further
practice. But there is one problem � the soldiers are standing ordered as usual by their height. This is
totally unacceptable for a scienti�c battalion. So colonel decided to order them by their IQ from lower to
higher.

To achieve this, Kruglyakovski performs the following procedure m times:

• He walks along the row starting from position 1 and when he doesn't like the way the soldiers are
ordered he immediately stops. It is known that during the j-th walk-through he stopped in front of
position pj . Numbers pj depend only on the mood of the colonel and don't obey any rule.

• Kruglyakovski tells that he is not satis�ed with the existing order and gently asks the soldier who is
currently standing at position pj to make the order better. And loudly adds that otherwise all the
scienti�c battalion will dig trenches for the rest of the day.

• The soldier who is currently at position pj tries to improve the situation. He gives a command to
the soldiers at positions pj , pj +1, . . . , n to step out of the row, sort by their IQ from lower to higher
and then step back to the unoccupied positions. This would work �ne for a regular battalion. But
for the scienti�c battalion the situation is a bit trickier � each soldier doesn't want to follow the
order of the person with a lower IQ. As a result, the soldiers with an IQ greater than IQ of the
soldier at position pj will not step out of the row. Thus only soldiers at positions pj , pj + 1, . . . , n
with IQ less or equal than IQ of the soldier at pj will follow the order and will take part in the
rearrangement.

• The colonel waits until the described rearrangement completes and returns to the beginning of the
row. After that, the j-th walk-through ends.

Being the adjutant of the colonel you were given a task to evaluate how close each of the obtained
arrangements is to the perfect one. It was decided that the suitable metric for that would be the irregularity
of the arrangement � the number of such pairs (x, y) that x < y, but IQ of the soldier at position x is
greater than IQ of the soldier at position y. Now you need to �nd out the irregularity of the initial
arrangement and the irregularity of the arrangements obtained during the colonel's walk-throughs.

Input

The �rst line contains two integers n and m (1 6 n 6 5 · 105, 1 6 m 6 5 · 105) � the number of soldiers
and the number of walk-througs the colonel made.

The next line contains n integers a1, a2, . . . , an (1 6 ai 6 106), where ai is IQ of the soldier who initially
stands at position i. The values are not necessarily distinct.

The next m lines contain one integer each. The j-th line contains number pj (1 6 pj 6 n) � the number
of the position where the colonel stopped during the walk-through number j. The positions p1, p2, . . . , pm
are not necessarily distinct.

Output

Print in the �rst line the irregularity of the initial arrangement. Then for each walk-through print in a
separate line the irregularity of the arrangement which was obtained by the end of the walk-through.

Page 8 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Examples

stdin stdout

4 4

120 130 140 110

2

3

4

1

3

2

1

1

0

Note

In the example the irregularity of the initial arrangement is 3, it is formed by pairs (1, 4), (2, 4) and (3, 4).

During the �rst walk-through the colonel stops in front of the second soldier. The soldier at position 3
doesn't take part in the rearrangement because his IQ is greater than IQ of the soldier who gives the
command. Thus only the second and the fourth soldiers rearrange. So by the end of walk-through the
order is (120, 110, 140, 130) with irregularity 2.

After the second rearrangement the order is (120, 110, 130, 140) with irregularity 1.

The third walk-through doesn't change the order, so irregularity is also 1.

After the fourth rearrangement all soldiers got sorted by their IQ, so irregularity is 0.

Page 9 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem F. Judging Time Prediction

Input �le: stdin

Output �le: stdout

Time limit: 2 seconds
Memory limit: 256 megabytes
Feedback:

It is not easy to predict. Do you know that the modern weather prediction is marginally better than to
use the previous day weather as a prediction for the next day?

This problem is about judging a submission on a programming contest like ACM-ICPC. Suppose there is
a single submission for the problem containing n tests. Based on the previous statistics for each test we
know ti � the expected time to judge on it and pi � the probability of a submission to pass the test.

There are m judging machines in the system. They are completely independent and are used to judge a
submission on multiple tests at the same time. They work as follows. Each time a judging machine has
no task (has just started or �nished processing the previous job), it chooses the unprocessed test with the
smallest number and judges submission on the chosen test. If it was judged on the i-th test, then after
time ti the verdict will be known. As it was written above, the probability that a submission passes the
test is pi.

Let's assume that the judging process starts at the same moment when all the judging machines start. So
at this moment the �rst min(m,n) tests start on the judging machines.

You know that on ACM-ICPC contests it is not necessary to judge a submission on all tests. The judging
process will be aborted at the �rst moment when two conditions are met at the same time:

• the solution was judged on some test (say, x) and didn't pass it,

• the solution was judged on all the tests 1, 2, . . . , x− 1 and passed all of them.

Naturally, if all the tests are judged and passed the judging process ends too.

Write a program to print the expected time to judge a submission. It means that you are to �nd the
mathematical expectation of the judging time according to the speci�ed model.

Input

The �rst line of the input contains two integer numbers n and m (1 6 n 6 3 · 105, 1 6 m 6 3 · 105) � the
number of tests and judging machines. The following n lines contain pairs of integers ti and real numbers
pi (1 6 ti 6 100, 0 < pi < 1), where ti is the time required to judge the i-th test and pi is the probability
to pass the i-th test. The values pi are given with no more than 4 digits after the decimal point.

Output

Print the only real number e � the expected time to judge the submission. Print it with at least 4 digits
after the decimal point.

Examples

stdin stdout

2 1

1 0.5

2 0.5

2.0000000000

2 2

1 0.5

2 0.5

1.5000000000

Page 10 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem G. Expression Evaluation

Input �le: stdin

Output �le: stdout

Time limit: 2 seconds
Memory limit: 256 megabytes
Feedback:

Berland scientists have proven that in the nearest future each computer will have k processors! So the
major problems in Berland computer science are about parallel algorithms. One of them is about expression
evaluation.

You are given an expression consisting of integer numbers, variables, operation signs (addition, subtraction,
multiplication) and parenthesis. Each operation is binary, no unary operation is allowed. Initially only
numbers and variables are evaluated. If both operands for an operation are evaluated it is possible to
evaluate the result of the operation in one time unit. Since k processors are available it is allowed to do at
most k independent evaluations in the same time unit. All of them will be processed in the same moment,
so each operand for each operation should be evaluated before the time unit starts.

It is not allowed to simplify/modify the expression or use some properties of operations except their
priorities. For example, multiple processors unable to evaluate the expression a+b+ ...+ z faster than
in 25 time units. Also even if di�erent parts of the expression contain identical subexpressions, each of
subexpressions should be evaluated independently. For example, if the given expression is -4+(a+2)*(a+2)
and k = 1, the expression can be evaluated in 4 time units. Here are the evaluations per time units:

1. evaluate the left subexpression a+2,

2. evaluate the right subexpression a+2,

3. evaluate the subexpression (a+2)*(a+2),

4. evaluate the expression -4+(a+2)*(a+2).

But if the number of processors k = 2, the 3 time units are enough:

1. in the same time evaluate both subexpressions a+2,

2. evaluate the subexpression (a+2)*(a+2),

3. evaluate the expression -4+(a+2)*(a+2).

The order of evaluation should match operation priorities, addition and subtraction have the same priority
so a chain of them is evaluated from the left to the right.

Write a program to �nd the minimum time to evaluate the given expression.

Input

The �rst line of the input contains the number of processors k (1 6 k 6 105). The second line contains the
given non-empty expression. It consists of integer numbers, variables, operator signs (addition, subtraction,
multiplication) and round brackets. The given expression is correct in a typical mathematical sense. The
integer numbers are between −2147483648 and 2147483647, inclusive. The variables are words containing
lowercase Latin letters. Their lengths are between 1 and 10, inclusive. The expression length doesn't
exceed 3 · 105 characters.

Output

Print the minimum number of time units required to evaluate the given expression on k processors.

Page 11 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Examples

stdin

100

a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+x+y+z

stdout

25

stdin

1

-4+(a+2)*(a+2)

stdout

4

stdin

2

-4+(a+2)*(a+2)

stdout

3

Note

The expression in the input satis�es the following BNF as a symbol exp.

• 〈exp〉 ::= 〈number〉 | 〈variable〉 | (〈exp〉) | 〈exp〉+〈exp〉 | 〈exp〉-〈exp〉 | 〈exp〉*〈exp〉

• 〈number〉 ::= integer number between -2147483648 and 2147483647

• 〈variable〉 ::= sequence of lowercase Latin letters

Page 12 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem H. Password Service
Input �le: stdin

Output �le: stdout

Time limit: 1 second
Memory limit: 256 megabytes
Feedback:

Startups are here, startups are there. Startups are everywhere! Polycarp would like to have his own
startup, too. His business idea is a password service. Have you noticed how many hours you spent trying
to create a password?

Polycarp's service will help clients to create a password by requirements. He is thinking about a freemium
business model of monetization. He doesn't know what it is, but he likes the word �freemium�.

The �rst release of Polycarp's startup should have a simple form with two �elds. The �rst �eld is for n,
where n denotes that the required password can consist of only �rst n lowercase letters from the Latin
alphabet. The second form �eld is for string s containing the characters `<', `>' and `='. The sign in position
i denotes the comparison result of the i-th and the (i+ 1)-th character in the password. So if the length
of s is l then the required password should consist of exactly l + 1 lowercase letters.

Polycarp o�ers you a great position in his startup, he o�ers you to become the CTO. Polycarp can't o�er
you a great salary (just only $1), but he will give you so many stock options that in case of IPO exit
you will be a millionaire! Why not? So your task is to write a program to generate a password containing
some of the �rst n lowercase letters of the Latin alphabet and which has s as a result of comparisons of
consecutive characters.

Input

The �rst line of the input contains an integer number n (1 6 n 6 26), where n denotes that the required
password should contain only lowercase letters from the �rst n letters of the Latin alphabet. The second
line contains the string s (the length of s is between 1 and 5000, inclusive), where s consists of the
characters `<', `>' and `='. The i-th character stands for the result of comparison of the i-th and the
(i+ 1)-th characters of the password.

Output

Print the required password or -1 if it doesn't exist. You may print any answer in case of multiple answers.

Examples

stdin stdout

5

=<>

bbdc

Page 13 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem I. Plugs and Sockets

Input �le: stdin

Output �le: stdout

Time limit: 2 seconds
Memory limit: 256 megabytes
Feedback:

The Berland Regional Contest will be held in the main hall of the Berland State University. The university
has a real international status. Thatâ��s why the power sockets in the main hall are not of the same type.
Some power sockets use the Berland standard of 330 volts at 40 Hz, but other sockets use the Beuropean
standard of 125 volts at 60 Hz.

The technical committee has n computers of three types. The computers of the �rst type have power
plugs to plug them in Berland sockets (of 330 volts), the computers of the second type have plugs to plug
them in Beuropean sockets (of 125 volts). The most universal type is the third type, they can be plugged
into any socket, it doesn't matter if the socket uses the Berland standard or the Beuropean standard.

Also the computers di�er by power consumption, the i-th computer consumes wi watts per hour.

The technical committee has to solve a di�cult problem. Which computers should they use and how to
plug them in the order to maximize the number of plugged computers? A single socket can be used for at
most one plug. If there are many ways to choose the maximum number of computers to plug, the technical
committee wants to �nd the way to minimize the total power consumption of the chosen computers.

Input

The �rst line of the input contains n, a and b (1 6 n 6 5000; 0 6 a, b 6 5000) � the number of computers
the technical committee has, the number of Berland standard sockets and the number of Beuropean
standard sockets in the hall. The following n lines contain computers' descriptions, one description per
line. Each description is a pair of two positive integer numbers ti and wi (1 6 ti 6 3; 1 6 wi 6 5000) �
the type of the i-th computer and its power consumption.

Output

On the �rst line print the maximum number of computers that can be plugged and the required minimum
total power consumption. Then print a single line for each plugged computer with two integer numbers
j and fj (1 6 j 6 n; 1 6 fj 6 a + b) meaning that the j-th computer should be connected to the fj-th
socket. The computers are numbered from 1 to n in the order of the input and sockets are numbered from
1 to a+ b in such way that the �rst a sockets use the Berland standard and the sockets a+ 1, a+ 2, . . . ,
a+ b use the Beuropean standard. Print the lines in any order. If there are multiple answers, print any of
them.

Examples

stdin stdout

5 1 2

1 2

1 1

3 10

2 20

2 15

3 26

2 1

5 2

3 3

Page 14 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem J. Contest, Another Contest and Train

Input �le: stdin

Output �le: stdout

Time limit: 2 seconds
Memory limit: 256 megabytes
Feedback:

Congratulations, you've made it to the Godeforces Open World Finals this year! Now you are in the train
en route to the �nals. The only problem is that Coogle Code Jam Online Round 3 is starting right now.
And you're not going to miss that one as well!

So you face the following challenge: you need to solve the contest on the train using your laptop and having
only intermittent internet connection via the mobile phone. Lucky for you, you had a stable connection
right at the moment the contest started and you were able to download the statements of all n problems.

For each problem i you know the score si you will receive for solving it and the number of minutes ti you
need to write a solution for it. You don't need a connection while writing a solution. You need exactly
one minute to submit any problem, and you do need a connection during this minute. Thus, you need
exactly ti + 1 minutes to write a solution and submit it.

You also know that during the contest there will be exactly m �time windows� during which you will have
stable internet connection. The j-th �window� spans from the lj-th minute up to the rj-th minute. You
can submit solutions only in the minutes which are in the stable internet connection �time windows�.

You need to �nd a strategy which will bring you the best score possible. You may write and submit
solutions in an arbitrary order. For instance, you can �rst solve several problems and then submit them
one by one. Also at any time you can interrupt your work on a current problem and submit another one
you prepared earlier. You can change the work you are doing only between minutes, so each minute you
are doing one type of work: writing some solution, submitting some solution or doing nothing. Obviously,
you can't submit a problem before you write a solution for it.

Input

The input starts with a line containing a pair of integers n and m (1 6 n 6 30, 1 6 m 6 1000), where
n is the number of problems in the problemset and m is the number of �windows� during which you will
have internet connection. The problems are numbered from 1 to n.

The following n lines contain the descriptions of problems, one description per line. The i-th description
contains two integers si, ti (1 6 si, ti 6 104), where si is the score you will receive for solving problem i,
and ti is time in minutes you need to write a solution for the i-th problem.

Then follow m lines describing �windows�, one description per line. The j-th description contains two
integers lj and rj (0 6 lj < rj 6 104), where lj is the time when the j-th �window� starts and rj is
the time when the j-th �window� ends, so in the j-th �window� you can submit a solution in minutes
lj , lj + 1, . . . , rj − 1. The contest minutes are numbered from 0. You may submit several solutions during
a single �window�. No two �windows� share a minute.

Output

Print two integers c and k on the �rst line of the output, where c is the maximum score possible and
k is the number of problems you need to solve in order to achieve the score. On the following k lines
describe the problems you will solve. Each line should contain two integers � the number of problem in
the problemset and the time at which you are going to submit a solution for it. Print the problems in the
order you are going to submit them. If there are several solutions, print any of them.

Page 15 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Examples

stdin stdout

3 2

1 1

2 2

3 3

0 1

3 5

3 1

3 4

6 3

2 3

1 2

3 2

4 2

3 3

4 2

8 10

2 3

14 15

14 4

6 2

5 8

4 9

3 14

Page 16 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem K. Road Work
Input �le: stdin

Output �le: stdout

Time limit: 2 seconds
Memory limit: 256 megabytes
Feedback:

There are a lot of water pipes under the main street of City S. The pipes and the pavement are very old
and have to be repaired. The main street consists of n parts, which are sequentially numbered from 1 to
n.

For each part of the main street the city community services have determined the number of days during
which this part can stay without repair. For part i this number is equal to di. It means that if part i is
not repaired by the end of day di, a geyser starts spurting up from under this part.

A geyser on the main street is not the thing the city authorities want to happen. That's why they have
found money for road work and are going to hire several repair brigades, equipped with heavy machinery.
At the beginning of day number 1 each brigade starts working on its own part. In a single day each brigade
repairs exactly one part of the street (it is impossible for two or more brigades to work on the same part).
At night a brigade moves to one of the neighboring parts. It is not allowed to move to the part that is
already repaired (no matter by which brigade). It means that each brigade either always moves from part
i to part i + 1, or always moves from part i to part i − 1. If a brigade completes the task assigned by
authorities, it stops working at the end of a day and never moves further. It is possible that di�erent
brigades will eventually repair di�erent number of road parts.

Your task is to help the city authorities to save money. Find out the minimum number of brigades that
is enough to hire in order to repair all parts of the street in time. Please, provide also the work schedule
for the brigades.

Input

The �rst line contains integer n (1 6 n 6 3 · 105) � the number of parts of the main street. The second
line contains n integers d1, d2, . . . dn, separated by spaces (1 6 di 6 106).

Output

In the �rst line print the minimum number of brigades that is enough. Then for each brigade in a separate
line print two integers: the number of the part where the brigade starts working, and the number of the
part where it �nishes working. If there are several optimal schedules, output any of them.

Examples

stdin stdout

8

3 4 1 1 3 2 1 3

4

3 1

4 5

6 6

7 8

Page 17 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem L. Stock Trading Robot

Input �le: stdin

Output �le: stdout

Time limit: 1 second
Memory limit: 256 megabytes
Feedback:

CyberTrader is an all-in-one trading solution for investment banks, quantitative hedge funds and
proprietary trading groups. It has only one drawback � it is not implemented yet.

You are working on implementing a simple algorithm to buy/sell shares. It should work as follows. Initially
a robot has d dollars and doesn't have any shares. The robot's behaviour is de�ned by two positive integer
numbers a and b, their role is explained below.

Starting from the second day, every day the robot analyzes a new share price comparing it with the
previous share price. If the price increases the robot buys shares � it buys as many shares as it can but
not more than x. Actually, x is not a constant and depends on the number of consecutive increases: x = a
for the �rst increase, x = 2a for two increases in a row, and so on, i.e. x = ka for k consecutive increases.
Surely, the robot can buy only non-negative integer number of shares and the number depends on the
money it has and on x.

If the price decreases the robot sells shares � it sells as many shares as it has but not more than y.
Actually, y is not a constant and depends on the number of consecutive decreases: y = b for the �rst
decrease in a row, y = 2b for two decreases in a row, and so on, i.e. y = kb for k consecutive decreases.

If the price doesn't change the robot does not buy or sell any shares.

Write a program for the robot to simulate the above algorithm.

Input

The �rst line of the input contains four positive integers n, d, a and b (1 6 n, d 6 105, 1 6 a, b 6 10),
where n is the number of days to simulate the algorithm. The following line contains sequence of positive
integers p1, p2, . . . , pn (1 6 pi 6 105), where pi is the share price on the i-th day.

It is guaranteed that there will be no over�ow of the 32-bit signed integer type, so feel free to use type
int (in C++ or Java) to store the number of dollars and shares.

Output

Print the number of dollars and the number of shares the robot will have after n days.

Examples

stdin stdout

5 10 1 2

1 2 3 4 5

2 3

4 3 1 1

1 2 100000 99999

100000 0

Note

In the �rst test the robot will buy one share on the second day and two shares on the third day.

In the second test the robot will buy one share for $2 and later will sell it for $99999. Since there were $3
initially, the total sum at the end will be $100000.

Page 18 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Problem M. Winnie-the-Pooh Needs Help

Input �le: stdin

Output �le: stdout

Time limit: 4 seconds
Memory limit: 256 megabytes
Feedback:

You know Winnie-the-Pooh has only sawdust in his head, that's why he isn't afraid of anything. To tell
the truth he isn't afraid of anything except he�alumps and woozles. If he sees a woozle sitting on a trail,
Winnie-the-Pooh will not use the trail and will �nd a roundabout route.

There are n meadows in the Hundred Acre Wood, and they are connected with m one-way trails. The
j-th trail connects two distinct meadows aj , bj and it is possible to walk it in the direction from aj to bj .
If Winnie-the-Pooh wants to go from the aj-th meadow to the bj-th meadow but sees a woozle on the
j-th trail, he will go round the trail by going the shortest route connecting aj and bj which doesn't go
through the j-th trail.

Winnie-the-Pooh is very curious and cautious at the same time. That is why for each trail j he wants to
know the length of the shortest route connecting aj and bj which doesn't use the j-th trail. Winnie-the-
Pooh is just a toy bear and he can't write a program to �nd the required value for each trail. Help him
and write a program for him.

Input

The input contains one or more testcases. Each testcase starts with a line containing a pair of integers
n and m (2 6 n 6 900; 1 6 m 6 150000), where n is the number of meadows and m is the number of
trails. The meadows are numbered from 1 to n. The following m lines contain the descriptions of trails,
one description per line. The j-th description contains two integers aj , bj (1 6 aj , bj 6 n; aj 6= bj), where
aj and bj are meadows connected by the j-th trail. It is possible to walk the j-th trail in the direction
from aj to bj but not vice versa. For each pair (a, b) there is at most one trail from a to b.

The total number of meadows in all testcases doesn't exceed 900, the total number of trails doesn't exceed
150000.

Output

For each testcase print the sequence f1, f2, . . . , fm on a single line. The value fj stands for the number of
trails in a shortest route which starts at aj , �nishes at bj and avoids the j-th trail. Print 0 if there is no
such route.

Page 19 of 20

ACM ICPC 2013-2014, NEERC, Southern Subregion

Southern, Friday, October 18, 2013

Examples

stdin stdout

3 3

1 2

2 3

1 3

3 3

1 2

2 1

1 3

3 6

1 2

2 1

1 3

3 1

3 2

2 3

0 0 2

0 0 0

2 2 2 2 2 2

Page 20 of 20

