
IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

Problem A. Grey Area

Input file: a.in

Output file: standard output

Dr. Grey is a data analyst, who visualizes various aspects of data received
from all over the world everyday. He is extremely good at sophisticated
visualization tools, but yet his favorite is a simple self-made histogram
generator.

Figure 1 is an example of histogram automatically produced by his his-
togram generator. A histogram is a visual display of frequencies of value
occurrences as bars. In this example, values in the interval 0-9 occur five
times, those in the interval 10-19 occur three times, and 20-29 and 30-39
once each.

Dr. Grey’s histogram generator is a simple tool. First, the height of the
histogram is fixed, that is, the height of the highest bar is always the
same and those of the others are automatically adjusted proportionately.
Second, the widths of bars are also fixed. It can only produce a histogram
of uniform intervals, that is, each interval of a histogram should have
the same width (10 in the above example). Finally, the bar for each
interval is painted in a grey color, where the colors of the leftmost and
the rightmost intervals are black and white, respectively, and the darkness
of bars monotonically decreases at the same rate from left to right. For
instance, in Figure 1, the darkness levels of the four bars are 1, 2/3, 1/3,
and 0, respectively. In this problem, you are requested to estimate ink
consumption when printing a histogram on paper. The amount of ink
necessary to draw a bar is proportional to both its area and darkness.

Input

The input consists of multiple datasets, each of which contains integers
and specifies a value table and intervals for the histogram generator, in
the following format.

n w

v1

v2

...

vn

n is the total number of value occurrences for the histogram, and each of
the n lines following the first line contains a single value. Note that the
same value may possibly occur multiple times.

w is the interval width. A value v is in the first (i.e. leftmost) interval
if 0 ≤ v < w, the second one if w ≤ v < 2w, and so on. Note that
the interval from 0 (inclusive) to w (exclusive) should be regarded as the
leftmost even if no values occur in this interval. The last (i.e. rightmost)
interval is the one that includes the largest value in the dataset.

You may assume the following.

1 ≤ n ≤ 100

10 ≤ w ≤ 50

0 ≤ vi ≤ 100 for 1 ≤ i ≤ n

You can also assume that the maximum value is no less than w. This
means that the histogram has more than one interval.

The end of the input is indicated by a line containing two zeros.

Output

For each dataset, output a line containing the amount of ink consumed
in printing the histogram. One unit of ink is necessary to paint one high-
est bar black. Assume that 0.01 units of ink per histogram is consumed
for various purposes except for painting bars such as drawing lines and
characters (see Figure 1). For instance, the amount of ink consumed in
printing the histogram in Figure 1 is:

1× 1 +
2

3
× 3

5
+

1

3
× 1

5
+ 0× 1

5
+ 0.01 = 1 +

2

5
+

1

15
+ 0.01 = 1.476666

Each output value should be in a decimal fraction and may have an error
less than 10−5.

Example

a.in standard output

3 50

100

0

100

3 50

100

100

50

10 10

1

2

3

4

5

16

17

18

29

30

0 0

0.51

0.26

1.4766666666666667

Problem B. Expected Allowance

Input file: b.in

Output file: standard output

Hideyuki is allowed by his father Ujisato some 1000 yen bills every month
for his pocket money. In the first day of every month, the number of bills is
decided as follows. Ujisato prepares n pieces of m-sided dice and declares
the cutback k. Hideyuki rolls these dice. The number of bills given is the
sum of the spots of the rolled dice decreased by the cutback. Fortunately
to Hideyuki, Ujisato promises him to give at least one bill, even if the sum
of the spots does not exceed the cutback. Each of the dice has spots of 1
through m inclusive on each side, and the probability of each side is the
same.

In this problem, you are asked to write a program that finds the expected
value of the number of given bills.

Input

The input is a sequence of lines each of which contains three integers n,
m and k in this order. They satisfy the following conditions.

1 ≤ n

2 ≤ m

0 ≤ k < nm

nm ≤ mn < 100000000 (108)

The end of the input is indicated by a line containing three zeros.

Output

The output should be comprised of lines each of which contains a single
decimal fraction. It is the expected number of bills and may have an error
less than 10−7. No other characters should occur in the output.

Page 1 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

Example

b.in standard output

2 6 0

2 6 3

3 10 9

13 3 27

1 2008 3

0 0 0

7.00000000

4.11111111

7.71000000

1.42902599

1001.50298805

Problem C. Stopped Watches

Input file: c.in

Output file: standard output

In the middle of Tyrrhenian Sea, there is a small volcanic island called
Chronus. The island is now uninhabited but it used to be a civilized is-
land. Some historical records imply that the island was annihilated by
an eruption of a volcano about 800 years ago and that most of the peo-
ple in the island were killed by pyroclastic flows caused by the volcanic
activity. In 2003, a European team of archaeologists launched an exca-
vation project in Chronus Island. Since then, the project has provided
many significant historic insights. In particular the discovery made in the
summer of 2008 astonished the world: the project team excavated several
mechanical watches worn by the victims of the disaster. This indicates
that people in Chronus Island had such a highly advanced manufacturing
technology.

Shortly after the excavation of the watches, archaeologists in the team
tried to identify what time of the day the disaster happened, but it was
not successful due to several difficulties. First, the extraordinary heat of
pyroclastic flows severely damaged the watches and took away the let-
ters and numbers printed on them. Second, every watch has a perfect
round form and one cannot tell where the top of the watch is. Lastly,
though every watch has three hands, they have a completely identical
look and therefore one cannot tell which is the hour, the minute, or the
second1. This means that we cannot decide the time indicated by a watch
uniquely; there can be a number of candidates. We have to consider differ-
ent rotations of the watch. Furthermore, since there are several possible
interpretations of hands, we have also to consider all the permutations of
hands.

You are an information archaeologist invited to the project team and are
asked to induce the most plausible time interval within which the disaster
happened, from the set of excavated watches. In what follows, we express
a time modulo 12 hours. We write a time by the notation hh:mm:ss, where
hh, mm, and ss stand for the hour (hh = 00, 01, 02, ... , 11), the minute
(mm = 00, 01, 02, ... , 59), and the second (ss = 00, 01, 02, ... , 59),
respectively. The time starts from 00:00:00 and counts up every second
00:00:00, 00:00:01, 00:00:02, ... , but it reverts to 00:00:00 every 12 hours.

The watches in Chronus Island obey the following conventions of modern
analog watches.

• A watch has three hands, i.e. the hour hand, the minute hand, and
the second hand, though they look identical as mentioned above.

• Every hand ticks 6 degrees clockwise in a discrete manner. That
is, no hand stays between ticks, and each hand returns to the same
position every 60 ticks.

• The second hand ticks every second.

• The minute hand ticks every 60 seconds.

• The hour hand ticks every 12 minutes.

At the time 00:00:00, all the three hands are located at the same position.

Because people in Chronus Island were reasonably keen to keep their
watches correct and pyroclastic flows spread over the island quite rapidly,
it can be assumed that all the watches were stopped in a short interval of
time. Therefore it is highly expected that the time the disaster happened
is in the shortest time interval within which all the excavated watches have
at least one candidate time.

You must calculate the shortest time interval and report it to the project
team.

1It is a mystery how the people in Chronus Island were distinguish-
ing the three hands. Some archaeologists guess that the hands might be
painted with different colors, but this is only a hypothesis, as the paint
was lost by the heat.

Input

The input consists of multiple datasets, each of which is formatted as
follows.

n

s1 t1 u1

s2 t2 u2

...

sn tn un

The first line contains a single integer n (2 ≤ n ≤ 10), representing the
number of the watches. The three numbers si, ti, ui in each line are
integers such that 0 . si; ti; ui . 59 and they specify the positions of
the three hands by the number of ticks relative to an arbitrarily chosen
position. Note that the positions of the hands of a watch can be expressed
in many different ways. For example, if a watch was stopped at the time
11:55:03, the positions of hands can be expressed differently by rotating
the watch arbitrarily (e.g. 59 55 3, 0 56 4, 1 57 5, etc.) and as well by
permuting the hour, minute, and second hands arbitrarily (e.g. 55 59 3, 55
3 59, 3 55 59, etc.). The end of the input is indicated by a line containing
a single zero.

Output

For each dataset, output the shortest time interval within which all the
watches given in the dataset have at least one candidate time. The output
must be written in a single line in the following format for each dataset.

hh:mm:ss h’h’:m’m’:s’s’

Each line contains a pair of times hh:mm:ss and h’h’:m’m’:s’s’, indicating
that the shortest interval begins at hh:mm:ss and ends at h’h’:m’m’:s’s’
inclusive. The beginning time and the ending time are separated by a
single space and each of them should consist of hour, minute, and second
in two digits separated by colons. No extra characters should appear in
the output.

In calculating the shortest interval, you can exploit the facts that every
watch has at least one candidate time and that the shortest time interval
contains 00:00:00 only if the interval starts from 00:00:00 (i.e. the shortest
interval terminates before the time reverts to 00:00:00).

If there is more than one time interval that gives the shortest, output the
one that first comes after 00:00:00 inclusive.

Example

c.in standard output

3

8 8 18

32 32 32

57 2 57

5

49 3 49

7 30 44

27 21 21

33 56 56

21 46 4

3

45 52 28

36 26 36

20 55 50

10

33 8 39

50 57 43

35 21 12

21 17 11

16 21 58

45 40 53

45 30 53

39 1 8

55 48 30

7 48 15

0

00:00:00 00:00:10

06:14:56 06:32:09

07:27:37 07:32:02

05:17:40 05:21:03

Page 2 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

Problem D. Digits on the Floor

Input file: d.in

Output file: standard output

Taro attempts to tell digits to Hanako by putting straight bars on the
floor. Taro wants to express each digit by making one of the forms shown
in Figure 2. Since Taro may not have bars of desired lengths, Taro cannot
always make forms exactly as shown in Figure 2. Fortunately, Hanako can
recognize a form as a digit if the connection relation between bars in the
form is kept. Neither the lengths of bars nor the directions of forms affect
Hanako’s perception as long as the connection relation remains the same.
For example, Hanako can recognize all the awkward forms in Figure 3 as
digits. On the other hand, Hanako cannot recognize the forms in Figure
4 as digits. For clarity, touching bars are slightly separated in Figures 2,
3 and 4. Actually, touching bars overlap exactly at one single point.

In the forms, when a bar touches another, the touching point is an end of
at least one of them.

That is, bars never cross. In addition, the angle of such two bars is always
a right angle.

To enable Taro to represent forms with his limited set of bars, positions
and lengths of bars can be changed as far as the connection relations are
kept. Also, forms can be rotated.

Keeping the connection relations means the following.

• Separated bars are not made to touch.

• Touching bars are not made separate.

• When one end of a bar touches another bar, that end still touches the
same bar. When it touches a midpoint of the other bar, it remains
to touch a midpoint of the same bar on the same side.

• The angle of touching two bars is kept to be the same right angle
(90 degrees and -90 degrees are considered different, and forms for 2
and 5 are kept distinguished).

Your task is to find how many times each digit appears on the floor.
The forms of some digits always contain the forms of other digits. For
example, a form for 9 always contains four forms for 1, one form for 4, and
two overlapping forms for 7. In this problem, ignore the forms contained
in another form and count only the digit of the “largest” form composed
of all mutually connecting bars. If there is one form for 9, it should be
interpreted as one appearance of 9 and no appearance of 1, 4, or 7.

Input

The input consists of a number of datasets. Each dataset is formatted as
follows.

n

x1a y1a x1b y1b

x2a y2a x2b y2b

...

xna yna xnb ynb

In the first line, n represents the number of bars in the dataset. For the
rest of the lines, one line represents one bar. Four integers xa, ya, xb, yb,
delimited by single spaces, are given in each line. xa and ya are the x-
and y-coordinates of one end of the bar, respectively. xb and yb are those
of the other end. The coordinate system is as shown in Figure 5. You can
assume 1 ≤ n ≤ 1000 and 0 ≤ xa, ya, xb, yb ≤ 1000.

The end of the input is indicated by a line containing one zero.

Output

For each dataset, output a single line containing ten integers delimited by
single spaces. These integers represent how many times 0, 1, 2, . . . , and
9 appear on the floor in this order. Output lines must not contain other
characters.

Example

d.in standard output

9

60 140 200 300

300 105 330 135

330 135 250 215

240 205 250 215

298 167 285 154

30 40 30 90

30 90 150 90

150 90 150 20

30 40 150 40

8

320 20 300 60

320 20 380 50

380 50 240 330

10 50 40 20

10 50 110 150

110 150 180 80

40 20 37 17

37 17 27 27

20

72 222 132 182

204 154 204 54

510 410 520 370

404 54 204 54

530 450 410 450

204 68 404 68

80 110 120 30

130 160 180 60

520 370 320 320

310 360 320 320

120 30 180 60

60 100 80 110

404 154 204 154

80 60 60 100

430 550 590 550

510 410 310 360

430 450 430 550

404 54 404 154

232 202 142 262

142 262 102 202

0

0 1 0 1 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0 0

1 0 1 0 2 0 0 0 1 0

12

Page 3 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

You can also assume the following conditions.

• More than two bars do not overlap at one point.

• Every bar is used as a part of a digit. Non-digit forms do not exist
on the floor.

• A bar that makes up one digit does not touch nor cross any bar that
makes up another digit.

• There is no bar whose length is zero.

Problem E. Spherical Mirrors

Input file: e.in

Output file: standard output

A long time ago in a galaxy, far, far away, there were N spheres with
various radii. Spheres were mirrors, that is, they had re ective surfaces
....

You are standing at the origin of the galaxy (0, 0, 0), and emit a laser ray
to the direction (u, v, w). The ray travels in a straight line.

When the laser ray from I hits the surface of a sphere at Q, let N be a
point outside of the sphere on the line connecting the sphere center and
Q. The reflected ray goes to the direction towards R that satisfies the
following conditions: (1) R is on the plane formed by the three points I,
Q and N , (2) ∠IQN = ∠NQR.

After it is reflected several times, finally it goes beyond our observation.
Your mission is to write a program that identifies the last reflection point.

Input

The input consists of multiple datasets, each in the following format.

N

u v w

x1 y1 z1 r1

...

xN yN zN rN

The first line of a dataset contains a positive integer N which is the number
of spheres. The next line contains three integers u, v and w separated
by single spaces, where (u, v, w) is the direction of the laser ray initially
emitted from the origin.

Each of the following N lines contains four integers separated by single
spaces. The i-th line corresponds to the i-th sphere, and the numbers
represent the center position (xi, yi, zi) and the radius ri.

N , u, v, w, xi, yi, zi and ri satisfy the following conditions.

1 ≤ N ≤ 100

−100 ≤ u, v, w ≤ 100

−100 ≤ xi, yi, zi ≤ 100

5 ≤ ri ≤ 30

u2 + v2 + w2 > 0

You can assume that the distance between the surfaces of any two spheres
is no less than 0.1.

You can also assume that the origin (0, 0, 0) is located outside of any
sphere, and is at least 0.1 distant from the surface of any sphere.

The ray is known to be reflected by the sphere surfaces at least once, and
at most five times.

You can assume that the angle between the ray and the line connecting
the sphere center and the reflection point, which is known as the angle of
reflection, is less than 85 degrees for each point of reflection.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, you should print the x-, y- and z-coordinates
of the last reflection point separated by single spaces in a line. No output
line should contain extra characters. No coordinate values in the output
should have an error greater than 0.01.

Example

e.in standard output

3

-20 -20 -24

100 100 100 30

10 8 3 5

-70 -70 -84 5

4

0 47 84

-23 41 42 8

45 -10 14 19

-5 28 47 12

-27 68 34 14

0

79.0940 79.0940 94.9128

-21.8647 54.9770 34.1761

Problem F. Traveling Cube

Input file: f.in

Output file: standard output

On a small planet named Bandai, a landing party of the starship Tadami-
gawa discovered colorful cubes traveling on flat areas of the planet surface,
which the landing party named beds. A cube appears at a certain posi-
tion on a bed, travels on the bed for a while, and then disappears. After a
longtime observation, a science officer Lt. Alyssa Ogawa of Tadamigawa
found the rule how a cube travels on a bed.

A bed is a rectangular area tiled with squares of the same size.

• One of the squares is colored red,

• one colored green,

• one colored blue,

• one colored cyan,

• one colored magenta,

• one colored yellow,

• one or more colored white, and

• all others, if any, colored black.

Initially, a cube appears on one of the white squares. The cube’s faces
are colored as follows — top: red, bottom: cyan, north: green, south:
magenta, east: blue, west: yellow.

The cube can roll around a side of the current square at a step and thus
rolls on to an adjacent square. When the cube rolls on to a chromatically
colored (red, green, blue, cyan, magenta or yellow) square, the top face of
the cube after the roll should be colored the same. When the cube rolls
on to a white square, there is no such restriction. The cube should never
roll on to a black square.

Throughout the travel, the cube can visit each of the chromatically colored
squares only once, and any of the white squares arbitrarily many times.
As already mentioned, the cube can never visit any of the black squares.
On visit to the final chromatically colored square, the cube disappears.
Somehow the order of visits to the chromatically colored squares is known
to us before the travel starts.

Your mission is to find the least number of steps for the cube to visit all
the chromatically colored squares in the given order.

Input

The input is a sequence of datasets. A dataset is formatted as follows:

w d
c11 . . . cw1

.

..
. . .

.

..
c1d . . . cwd

v1v2v3v4v5v6

The first line is a pair of positive integers w and d separated by a space.
The next d lines are w-character-long strings c11 . . . cw1, c1d . . . cwd with
no spaces. Each character cij is one of the letters r, g, b, c, m, y, w and k,
which stands for red, green, blue, cyan, magenta, yellow, white and black
respectively, or a sign #. Each of r, g, b, c, m, y and # occurs once and only
once in a dataset. The last line is a six-character-long string v1v2v3v4v5v6

which is a permutation of “rgbcmy”.

Page 4 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

The integers w and d denote the width (the length from the east end to
the west end) and the depth (the length from the north end to the south
end) of a bed. The unit is the length of a side of a square. You can assume
that neither w nor d is greater than 30.

Each character cij shows the color of a square in the bed. The characters
c11, cw1, c1d and cwd correspond to the north-west corner, the north-
east corner, the south-west corner and the southeast corner of the bed
respectively. If cij is a letter, it indicates the color of the corresponding
square. If cij is a #, the corresponding square is colored white and is the
initial position of the cube.

The string v1v2v3v4v5v6 shows the order of colors of squares to visit. The
cube should visit the squares colored v1, v2, v3, v4, v5 and v6 in this order.

The end of the input is indicated by a line containing two zeros separated
by a space.

Output

For each input dataset, output the least number of steps if there is a
solution, or “unreachable” if there is no solution. In either case, print it
in one line for each input dataset.

Example

f.in standard output

10 5

kkkkkwwwww

w#wwwrwwww

wwwwbgwwww

kwwmcwwwkk

kkwywwwkkk

rgbcmy

10 5

kkkkkkkkkk

k#kkkkkkkk

kwkkkkkwwk

kcmyrgbwwk

kwwwwwwwwk

cmyrgb

10 5

kkkkkkkkkk

k#kkkkkkkk

kwkkkkkwkk

kcmyrgbwwk

kwwwwwwwwk

cmyrgb

0 0

9

49

unreachable

Problem G. Search of Concatenated Strings

Input file: g.in

Output file: standard output

The amount of information on the World Wide Web is growing quite
rapidly. In this information explosion age, we must survive by accessing
only the Web pages containing information relevant to our own needs.
One of the key technologies for this purpose is keyword search. By using
well-known search engines, we can easily access those pages containing
useful information about the topic we want to know.

There are many variations in keyword search problems. If a single string
is searched in a given text, the problem is quite easy. If the pattern
to be searched consists of multiple strings, or is given by some powerful
notation such as regular expressions, the task requires elaborate algorithms
to accomplish efficiently.

In our problem, a number of strings (element strings) are given, but they
are not directly searched for. Concatenations of all the element strings in
any order are the targets of the search here.

For example, consider three element strings aa, b and ccc are given. In this
case, the following six concatenated strings are the targets of the search,
i.e. they should be searched in the text.

aabccc

aacccb

baaccc

bcccaa

cccaab

cccbaa

The text may contain several occurrences of these strings. You are re-
quested to count the number of occurrences of these strings, or speaking
more precisely, the number of positions of occurrences in the text.

Two or more concatenated strings may be identical. In such cases, it
is necessary to consider subtle aspects of the above problem statement.
For example, if two element strings are x and xx, the string xxx is an
occurrence of both the concatenation of x and xx and that of xx and x.
Since the number of positions of occurrences should be counted, this case
is counted as one, not two.

Two occurrences may overlap. For example, the string xxxx has occur-
rences of the concatenation xxx in two different positions. This case is
counted as two.

Input

The input consists of a number of datasets, each giving a set of element
strings and a text. The format of a dataset is as follows.

n m

e1

e2

...

en

t1

t2

...

tm

The first line contains two integers separated by a space. n is the number
of element strings. m is the number of lines used to represent the text.
n is between 1 and 12, inclusive. Each of the following n lines gives an
element string. The length (number of characters) of an element string is
between 1 and 20, inclusive.

The last m lines as a whole give the text. Since it is not desirable to have
a very long line, the text is separated into m lines by newlines, but these
newlines should be ignored. They are not parts of the text. The length
of each of these lines (not including the newline) is between 1 and 100,
inclusive. The length of the text is between 1 and 5000, inclusive.

The element strings and the text do not contain characters other than
lowercase letters.

The end of the input is indicated by a line containing two zeros separated
by a space.

Output

For each dataset in the input, one line containing the number of matched
positions should be output. An output line should not contain extra char-
acters.

Example

g.in

3 1
aa
b
ccc
aabccczbaacccbaazaabbcccaa
3 1
a
b
c
cbbcbcbabaacabccaccbaacbccbcaaaccccbcbcbbcacbaacccaccbbcaacbbabbabaccc
0 0

standard output

5

12

Page 5 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

Problem H. Top Spinning

Input file: h.in

Output file: standard output

Spinning tops are one of the most popular and the most traditional toys.
Not only spinning them, but also making one’s own is a popular enjoyment.

One of the easiest way to make a top is to cut out a certain shape from a
cardboard and pierce an axis stick through its center of mass. Profession-
ally made tops usually have three dimensional shapes, but in this problem
we consider only two dimensional ones.

Usually, tops have rotationally symmetric shapes, such as a circle, a rect-
angle (with 2-fold rotational symmetry) or a regular triangle (with 3-fold
symmetry). Although such symmetries are useful in determining their
centers of mass, they are not definitely required; an asymmetric top also
spins quite well if its axis is properly pierced at the center of mass. When
a shape of a top is given as a path to cut it out from a cardboard of uni-
form thickness, your task is to find its center of mass to make it spin well.
Also, you have to determine whether the center of mass is on the part of
the cardboard cut out. If not, you cannot pierce the axis stick, of course.

Input

The input consists of multiple datasets, each of which describes a coun-
terclockwise path on a cardboard to cut out a top. A path is indicated by
a sequence of command lines, each of which specifies a line segment or an
arc.

In the description of commands below, the current position is the posi-
tion to start the next cut, if any. After executing the cut specified by a
command, the current position is moved to the end position of the cut
made.

The commands given are one of those listed below. The command name
starts from the first column of a line and the command and its arguments
are separated by a space. All the command arguments are integers.

start x y

Specifies the start position of a path. This command itself does not specify
any cutting; it only sets the current position to be (x, y).

line x y

Specifies a linear cut along a straight line from the current position to the
position (x, y), which is not identical to the current position.

arc x y r

Specifies a round cut along a circular arc. The arc starts from the current
position and ends at (x, y), which is not identical to the current position.
The arc has a radius of |r|. When r is negative, the center of the circle is
to the left side of the direction of this round cut; when it is positive, it is
to the right side (Figure 7). The absolute value of r is greater than the
half distance of the two ends of the arc. Among two arcs connecting the
start and the end positions with the specified radius, the arc specified is
one with its central angle less than 180 degrees.

close

Closes a path by making a linear cut to the initial start position and ter-
minates a dataset. If the current position is already at the start position,
this command simply indicates the end of a dataset.

The figure below gives an example of a command sequence and its corre-
sponding path. Note that, in this case, the given radius -r is negative and
thus the center of the arc is to the left of the arc. The arc command should
be interpreted as shown in this figure and, not the other way around on
the same circle.

A dataset starts with a start command and ends with a close command.
The end of the input is specified by a line with a command end.

There are at most 100 commands in a dataset and at most 100 datasets
are in the input.

Absolute values of all the coordinates and radii are less than or equal to
100.

You may assume that the path does not cross nor touch itself. You may
also assume that paths will never expand beyond edges of the cardboard,
or, in other words, the cardboard is virtually infinitely large.

Output

For each of the dataset, output a line containing x- and y-coordinates of the
center of mass of the top cut out by the path specified, and then a character
‘+’ or ‘-’ indicating whether this center is on the top or not, respectively.
Two coordinates should be in decimal fractions. There should be a space
between two coordinates and between the y-coordinate and the character
‘+’ or ‘-’. No other characters should be output. The coordinates may
have errors less than 10−3. You may assume that the center of mass is at
least 10−3 distant from the path.

Example

h.in standard output

start 0 0

arc 2 2 -2

line 2 5

arc 0 3 -2

close

start -1 1

line 2 1

line 2 2

line -2 2

arc -3 1 -1

line -3 -2

arc -2 -3 -1

line 2 -3

line 2 -2

line -1 -2

line -1 -1

arc -1 0 2

close

start 0 0

line 3 0

line 5 -1

arc 4 -2 -1

line 6 -2

line 6 1

line 7 3

arc 8 2 -1

line 8 4

line 5 4

line 3 5

arc 4 6 -1

line 2 6

line 2 3

line 1 1

arc 0 2 -1

close

end

1.00000 2.50000 +

-1.01522 -0.50000 -

4.00000 2.00000 +

Problem I. Common Polynomial

Input file: i.in

Output file: standard output

Math teacher Mr. Masdura is teaching expansion and factoring of poly-
nomials to his students. Last week he instructed the students to write
two polynomials (with a single variable x), and to report GCM (greatest
common measure) of them as a homework, but he found it boring to check
their answers manually. So you are asked to write a program to check the
answers. Hereinafter, only those polynomials with integral coefficients,
called integral polynomials, are considered.

When two integral polynomials A and B are given, an integral polynomial
C is a common factor of A and B if there are some integral polynomials X
and Y such that A = CX and B = CY . GCM of two integral polynomials

Page 6 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

is a common factor which has the highest degree (for x, here); you have
to write a program which calculates the GCM of two polynomials. It
is known that GCM of given two polynomials is unique when constant
multiplication factor is ignored. That is, when C and D are both GCM of
some two polynomials A and B, p×C = q ×D for some nonzero integers
p and q.

Input

The input consists of multiple datasets. Each dataset constitutes a pair of
input lines, each representing a polynomial as an expression defined below.

1. A primary is a variable x, a sequence of digits 0 - 9, or an expression
enclosed within (). Examples: x, 99, (x+1).

2. A factor is a primary by itself or a primary followed by an exponent.
An exponent consists of a symbol ˆfollowed by a sequence of digits
0 - 9. Examples: xˆ05, 1ˆ15, (x+1)ˆ3.

3. A term consists of one or more adjoining factors. Examples: 4x,
(x+1)(x-2), 3(x+1)ˆ2.

4. An expression is one or more terms connected by either + or -. Ad-
ditionally, the first term of an expression may optionally be preceded
with a minus sign -. Examples: -x+1, 3(x+1)ˆ2-x(x-1)ˆ2.

Integer constants, exponents, multiplications (adjoining), additions (+)
and subtractions/negations (-) have their ordinary meanings. A sequence
of digits is always interpreted as an integer constant. For example, 99
means 99, not 9× 9.

Any subexpressions of the input, when fully expanded normalized, have
coefficients less than 100 and degrees of x less than 10. Digit sequences in
exponents represent non-zero values. All the datasets are designed so that
a standard algorithm with 32-bit two’s complement integers can solve the
problem without overflows.

The end of the input is indicated by a line containing a period.

Output

For each of the dataset, output GCM polynomial expression in a line, in the
format below. c0xˆp0+c1xˆp1 . . .+cnxˆpn Where ci and pi (i = 0, . . . , n)
are positive integers with p0 > p1 > . . . > pn, and the greatest common
divisor of {ci|i = 0, . . . , n} is 1.

Additionally:

• When ci is equal to 1, it should be omitted unless corresponding pi

is 0,

• xˆ0 should be omitted as a whole, and

• xˆ1 should be written as x.

Example

i.in standard output

-(x^3-3x^2+3x-1)

(x-1)^2

x^2+10x+25

x^2+6x+5

x^3+1

x-1

.

x^2-2x+1

x+5

1

Problem J. Zigzag

Input file: j.in

Output file: standard output

Given several points on a plane, let’s try to solve a puzzle connecting them
with a zigzag line. The puzzle is to find the zigzag line that passes through
all the given points with the minimum number of turns. Moreover, when
there are several zigzag lines with the minimum number of turns, the
shortest one among them should be found.

For example, consider nine points given in Figure 10.

A zigzag line is composed of several straight line segments. Here, the rule
requests that each line segment should pass through two or more given
points.

A zigzag line may turn at some of the given points or anywhere else. There
may be some given points passed more than once.

Two zigzag lines with three turning points are depicted in Figure 11 (a)
and (b) for the same set of given points shown in Figure 10. The length
of the zigzag line in Figure 11 (a) is shorter than that in Figure 11 (b). In
fact, the length of the zigzag line in Figure 11 (a) is the shortest so that
it is the solution for the nine points given in Figure 10. Another zigzag
line with four turning points is depicted in Figure 12. Its length is shorter
than those in Figure 11, however, the number of turning points is greater
than those in Figure 11, and thus, it is not the solution.

There are two zigzag lines that passes another set of given points depicted
in Figure 13 (a) and (b).

Both have the same number of turning points, and the line in (a) is longer
than that in (b). However, the solution is (a), because one of the segments
of the zigzag line in (b) passes only one given point, violating the rule.

Your job is to write a program that solves this puzzle.

Input

The input consists of multiple datasets, followed by a line containing one
zero. Each dataset has the following format.

n
x1 y1

..

.
xn yn

Every input item in a dataset is a non-negative integer. Items in a line
are separated by a single space.

Page 7 of 8

IFMO Training 21 — February 14, 2009
ACM ICPC 2008–2009, Aizu Regional Contest

n is the number of the given points. xk and yk (k = 1, . . . , n) indicate the
position of the k-th point. The order of the points is meaningless. You
can assume that 2 ≤ n ≤ 10, 0 ≤ xk ≤ 10, and 0 ≤ yk ≤ 10.

Output

For each dataset, the minimum number of turning points and the length
of the shortest zigzag line with that number of turning points should be
printed, separated by a space in a line. The length should be in a decimal
fraction with an error less than 0.0001.

You may assume that the minimum number of turning points is at most
four, that is, the number of line segments is at most five.

Example

j.in standard output

2

0 0

10 9

4

0 0

3 1

0 3

3 3

10

2 2

4 2

6 2

2 4

4 4

6 4

2 6

4 6

6 6

3 3

10

0 0

2 0

4 0

0 2

2 2

4 2

0 4

2 4

4 4

6 8

9

0 0

1 0

3 0

0 1

1 1

3 1

0 2

1 2

2 2

10

0 0

1 0

0 1

1 1

9 9

9 10

10 9

10 10

0 2

10 8

10

0 0

0 10

2 0

2 1

2 7

2 10

5 1

6 7

9 2

10 9

0

0 13.45362405

1 18.48683298

3 24.14213562

4 24.94813673

3 12.24264069

3 60.78289622

3 502.7804353

Page 8 of 8

