
ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem A. Auxiliary Question of the Universe

Input file: auxiliary.in
Output file: auxiliary.out
Time limit: 3 seconds
Memory limit: 256 megabytes

As you probably know, scientists already discovered the Ultimate question of life, the Universe, and
everything, and it is “What do you get if you multiply six by nine?”. Not satisfied by this, the scientists
contracted a small Magrateyan company to construct a mini-computer to find out some more specific
question (they named it auxiliary), which can theoretically shed more light on life, the Universe or
something else.

This computer was built, but unluckily (although not unexpectedly) the result of computation was
corrupted and partially lost. Finally the computer constructors managed to receive a string, which is a
part of the correct question. After thorough analysis the constructors started to believe that the original
result can be reconstructed from the string by adding some letters to it without the string letters being
reordered or removed. Also they believe that the correct result is an arithmetic expression (as with the
Ultimate question), but since the question is auxiliary, it contains no multiplication, only addition. More
precisely, it should correspond to the following grammar:

〈expression〉 ::= 〈term〉 | 〈term〉 ‘+’ 〈expression〉
〈term〉 ::= 〈number〉 | ‘(’ 〈expression〉 ‘)’

〈number〉 ::= ‘0’ . . . ‘9’ [〈number〉]

The constructors do not want to risk again, and they need your help to give just something to their
clients. They ask you to reconstruct the question based on the corrupted computer answer which they
managed to retrieve.

Input

The input file contains exactly one line — the corrupted auxiliary question. It is a non-empty string
which is at most 1000 symbols long. This string contains only symbols ‘+’, ‘(’, ‘)’, and ‘0’, . . . , ‘9’.

Output

Output the reconstructed auxiliary question. It’s guaranteed that there exists a correct question of less
than 5000 symbols and your solution must also be shorter than that. If there is more than one solution,
output any one.

Example

auxiliary.in auxiliary.out
1+0+1) (1+0+1)

2009 2009

)(()((0)+((0)+(0))

Page 1 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem B. Bureaucracy

Input file: bureau.in
Output file: bureau.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Long ago, in a kingdom far, far away the king decided to keep a record of all laws of his kingdom. From
that moment whenever a new law was passed, a corresponding record was added to the law archive.

Many centuries later lawyers discovered that there were only two types of laws in the kingdom:
• direct law, that states a new norm;
• canceling law, that cancels one of the previous laws.

The law is considered active if and only if there is no active law that cancels it.

You are to write program that finds out which laws are still active.

Input

The first line of the input file contains an integer number n (1 ≤ n ≤ 100 000) — the number of passed
laws.

The following n lines describe one law each. Each description has one of the following formats:
• “declare”, meaning that a direct law was passed.
• “cancel i”, where i is the number of law being cancelled by this one.

The laws are numbered from one.

Output

The first line of the output file must contain the number of active laws. Following lines must contain
numbers of these laws listed in increasing order.

Example

bureau.in bureau.out
5
declare
cancel 1
declare
cancel 2
cancel 3

3
1 4 5

Page 2 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem C. Circles on a Screen
Input file: circles.in
Output file: circles.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Yesterday Andrew wrote a program that draws n white circles on a black screen. The screen is
monochrome and it has a resolution w × h pixels. Pixels are numbered from upper left corner (0, 0)
to bottom right one (w − 1, h − 1).

A circle with the center at pixel (xc, yc) and the radius r consists of the pixels with coordinates (x, y)
such that

√
(xc − x)2 + (yc − y)2 ≤ r. If the circle does not fit on the screen, it is truncated. If some

pixel belongs to two or more circles, it is white.

The resulting picture was very nice, so Andrew decided to copy it to his wall. He has white wallpaper
and he can only draw some parts of wall into black. Now he wants to know the amount of paint he needs.
He copies the picture exactly pixel-to-pixel, so you should write a program that calculates the number of
black pixels left on a screen after drawing n circles.

Input

In the first line of input file there are three integers: w, h, and n (1 ≤ w, h ≤ 20 000; 1 ≤ n ≤ 100). Each
of the following n lines contains descriptions of the circle. In i + 1-th line there are three integers: xi, yi,
ri (0 ≤ xi < w; 0 ≤ yi < h; 0 ≤ ri ≤ 40 000). They denote a circle with the center at pixel (xi, yi) and
radius ri.

Output

You should output exactly one number — the number of black pixels left on the screen.

Example

circles.in circles.out
5 3 2
1 1 1
3 1 1

6

12 9 2
3 3 2
7 5 4

51

Note: The picture corresponds to the second example.

Page 3 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem D. Dragon’s Question

Input file: dragon.in
Output file: dragon.out
Time limit: 3 seconds
Memory limit: 256 megabytes

In a land far-away there lives a noble man, and he has three sons. The elder of them is very clever, his
especial strength is calculation: he can easily count a determinant of fifth degree in his mind without
paper and pencil. The middle brother is also very talented, he is particularly strong in theoretic questions.
But the younger brother has absolutely no talent in mathematics.

One day they went for a walk. Suddenly a wind started to blow and something closed the sun from them:
it was a hungry dragon, returning to his lair from unsuccessful hunt.

“Hey, boys. I will give you a problem, and if you do not solve it, nothing will save you!” — said the
dragon.

The elder brothers smiled ironically. Of course, they were so clever that no dragon could ask them a
question they were not able to answer.

“Give me a positive integer number which is divisible by d and has exactly n digits in it, assuming that
d is equal to forty-five and n is equal to three!” — was the dragon’s question.

“One hundred and thirty-five.” — answered the elder brother.

“Good, go where you want. But I will return and ask you a similar question in a year.” — said the upset
hungry dragon and flew away.

A year passed, and the elder brother got married and left his parents’ home. Two younger brothers went
for a walk discussing this event, and met the dragon again.

“Hey boys, give me a positive integer number which is divisible by twenty three and has exactly one digit
in it” — asked the dragon.

“No solution” — answered the middle brother.

“You are still too clever, go where you want. But I will return and ask you a similar question.” — said
the dragon and flew away.

Another year passed and the middle brother got married and left his parents’ home. The younger brother
now does not go outside, because he does not have enough knowledge to answer the dragon’s questions.
Please, help him and write a program — the boy is very afraid.

Input

The input file contains the only line with numbers n and d (1 ≤ n ≤ 1000; 1 ≤ d ≤ 1 000 000).

Output

The first and only line of the output file must contain the answer to be given to the dragon — either a
n-digit number (without leading zeroes) divisible by d or a string “No solution”.

Example

dragon.in dragon.out
20 1 10000000000000000000

1 23 No solution

1 4 4

Page 4 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem E. Enigmatic Device

Input file: enigmatic.in
Output file: enigmatic.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Yes, it happened! The first contact! Aliens will visit the Earth in 2010! And they promised to bring an
enigmatic device which cannot be constructed using existing Earth technologies. Most of the scientists
of the world think so! All newspapers already published their leading articles about it.

This device will accept an integer sequence {ai} as its initial input. After that, it can perform the
following two operations:

1. Take an interval [l; r] and perform ai ← a2
i mod 2010 for all ai such that l ≤ i ≤ r.

2. Take an interval [l; r] and output the sum of all ai such that l ≤ i ≤ r. Note that the sum is not
taken modulo 2010.

The amazing thing about this device is that it is able to perform 50 000 operations of this kind with a
sequence of 50 000 numbers within 3 seconds. Nobody could do it before!

But Roman does not believe in aliens and thinks that it is only a great hoax made by somebody just to
win another million bucks on the stock exchange. His goal is to prove this. So he hired you to write a
program to simulate this device.

Given an integer sequence ai and a sequence of operations, write a program which simulates the behaviour
of the strange alien device.

Input

The first line of the input contains the length of the sequence n (1 ≤ n ≤ 50 000). The second line
contains n numbers ai forming the initial sequence (0 ≤ ai ≤ 2009). The third line contains the number
of operations m (1 ≤ m ≤ 50 000). The rest of file contains m lines, each describing one operation. The
j-th operation is described by its kind kj (‘1’ for squaring, ‘2’ for calculating the sum), followed by two
integers lj and rj (1 ≤ lj ≤ rj ≤ n).

Output

For each operation of the second kind, write their output on the separate line, in order they appear in
the input.

Example

enigmatic.in enigmatic.out
3
17 239 999
4
2 1 3
1 2 3
2 2 3
2 1 2

1255
1882
858

Page 5 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem F. Four Points
Input file: four.in
Output file: four.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Mike is a magician. One of his inventions is a labyrinth that gives supernatural abilities to every person
who walks through it. The labyrinth has an extremely complicated internal structure, however, for an
external observer it is just a square on the ground.

Mike has found some suitable place for labyrinth on the seashore. He drew its border on the sand and
marked four points with small stones so that each side of the square contained exactly one stone and no
stone was placed in the corner.

As no picture drawn on the sand stays forever, after a while Mike found only the stones on their places.
Now he wonders where the marked square could have been.

Your task is to restore some possible place of the labyrinth and return four corners of the square as a
result. You may assume that the seashore is a plane and the stones are points on it.

Input

The first four lines of the input file contain two integer numbers xi and yi each — coordinates of the i-th
point (−1 000 ≤ xi, yi ≤ 1 000). No two points coincide, no three points are collinear.

Output

Output four lines containing two real numbers each — coordinates of the vertices of the square. Vertices
should be listed in either clockwise or counterclockwise order. Coordinates must be precise up to 6 digits
after the decimal point.

If there are multiple solutions, output any of them. If there is no solution, write four pairs of zeroes
instead of the coordinates.

Example

four.in four.out
6 13
11 12
9 2
2 6

6 0
15 6
9 15
0 9

0 0
5 5
5 0
3 2

0 0
0 0
0 0
0 0

Page 6 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem G. Grand Theft Auto Wheel
Input file: gtaw.in
Output file: gtaw.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Tommy is a wheel thief. His job was formerly as easy as pie: you lift a car, turn off wheel bolts, take the
wheel and run away. But now everybody uses “anti-theft” bolts.

Anti-theft bolt is designed in such a way that it cannot be turned off with a usual wrench. Its head is
a cylinder with a hole. To turn the anti-theft bolt off you need a right wrench. The wrench has a ring
with a lug that exactly matches the shape of the bolt head.

Bolt head and corresponding wrench.

Of course Tommy cannot get wrenches for all possible anti-theft bolts. But sometimes it is possible to
turn off the bolt with the wrench that does not match it exactly.

More formally, the wrench can turn off the bolt if and only if two following conditions are satisfied:
• the ring of the wrench can be joined with the cylinder of the bolt head in such a way that the lug

of the wrench is inside the hole of the bolt head;
• the wrench cannot make a full turn when the bolt is fixed.

For example:

+ =

+ =

+ =

Situations where the bolt can be turned off with improper wrench.

Due to technical reasons, the shape of both — hole of the bolt head and lug of the wrench, are always a
star-shaped polygons with theirs centers in the center of the bolt or wrench. So if it is described in polar
coordinate system as a sequence of pairs (ri, ϕi) then ϕi+1 < ϕi and ϕi+1 − ϕi < 180◦.

Page 7 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

ϕi

r i

(ri, ϕi)

Help Tommy do find out if it is possible to turn off the bolt with the wrenches he has.

Input

The first line of input file contains two integer numbers n and r — the number of wrenches and the radii
of the bolt head and the wrenches’ rings (1 ≤ n ≤ 10, 1 ≤ R ≤ 1000).

The following lines describe the bolt head. Description consists of an integer number m — number of
vertices (3 ≤ m ≤ 100) and m pairs of integer numbers (ri, ϕi) (1 ≤ ri < R; 0◦ ≤ ϕi < 360◦; ϕi < ϕi+1;
ϕi+1 − ϕi < 180◦; ϕm − ϕ1 > 180◦).

The rest lines describe the wrenches in the same format.

Output

The first line of the output file must contain the number of wrenches that can be used to turn off the
bolt. The following lines must contain wrench numbers in increasing order.

Example

gtaw.in gtaw.out
3 10
4
9 0
9 90
9 180
9 270
4
8 45
8 135
8 225
8 315
4
6 45
6 135
6 225
6 315
3
7 0
7 90
6 225

2
1 3

Page 8 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem H. Homo or Hetero?
Input file: homo.in
Output file: homo.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Consider a list of numbers with two operations:
• insert number — adds the specified number to the end of the list.
• delete number — removes the first occurrence of the specified number from the list. If the list

does not contain the number specified, no changes are performed.

For example: the result of the insertion of a number 4 to the list [1, 2, 1] is the list [1, 2, 1, 4]. If we delete
the number 1 from this list, we get the list [2, 1, 4], but if we delete the number 3 from the list [1, 2, 1, 4],
the list stays unchanged.

The list is homogeneous if it contains at least two equal numbers and the list is heterogeneous if it
contains at least two different numbers. For example: the list [2, 2] is homogeneous, the list [2, 1, 4] is
heterogeneous, the list [1, 2, 1, 4] is both, and the empty list is neither homogeneous nor heterogeneous.

Write a program that handles a number of the operations insert and delete on the empty list and
determines list’s homogeneity and heterogeneity after each operation.

Input

The first line of the input file contains an integer number n — the number of operations to handle
(1 ≤ n ≤ 100 000).

Following n lines contain one operation description each. The operation description consists of a word
“insert” or “delete”, followed by an integer number k — the operation argument (−109 ≤ k ≤ 109).

Output

For each operation output a line, containing a single word, describing the state of the list after the
operation:

• “both” — if the list is both homogeneous and heterogeneous.
• “homo” — if the list is homogeneous, but not heterogeneous.
• “hetero” — if the list is heterogeneous, but not homogeneous.
• “neither” — if the list is neither homogeneous nor heterogeneous.

Example

homo.in homo.out
11
insert 1
insert 2
insert 1
insert 4
delete 1
delete 3
delete 2
delete 1
insert 4
delete 4
delete 4

neither
hetero
both
both
hetero
hetero
hetero
neither
homo
neither
neither

Page 9 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem I. Image Recognition

Input file: image.in
Output file: image.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Irene works for Novel Efforts in Effective Recognition of Characters (NEERC). Her new project concerns
image recognition using robots.

Since the approach is quite innovative, Irene starts with a very simple model first. She fixed d images
which are called digits 0 to d−1. Each image is a w×h rectangle filled with white and black unit squares
(call them pixels). All images are distinct (that is, each two images differ in at least one pixel).

The robot is placed in the upper left pixel of one of the images. It starts executing a program written
in a specific programming language described below. The task of the robot is to recognize which of the
d images it was placed onto.

The programming language for the robot consists of the following commands:
‘U’, ‘D’, ‘L’, ‘R’ — movement commands. The robot moves one pixel up, down, left, or right respectively.

If a movement command moves robot outside the image, the task is failed.
‘(’ 〈subprogramw〉 ‘:’ 〈subprogramb〉 ‘)’ — conditional operator. The robot checks the color of the

pixel underneath itself. If it is white then 〈subprogramw〉 is executed, otherwise 〈subprogramb〉 is
executed.

‘0’, ‘1’, . . . , ‘9’ — recognized image commands. The robot must execute one of these commands when
it knows which image it was placed onto. After such command, the program terminates.

Each movement command takes one time unit to execute. The execution of conditional operator and
image recognized commands is instantaneous.

Irene is interested in the program that always works correctly. That is, if a robot is placed onto the image
corresponding to the digit i, then the execution of the program must end with the command ‘i’.

Given the set of images, design a correct program for the robot, such that its execution time in the worst
case is minimal.

Input

The first line contains three integers d, h, and w (1 ≤ d ≤ 10; 1 ≤ h,w ≤ 10) — the number of considered
images, the height and the width of each image.

The rest if the input file contains d descriptions of images. Each description consists of h lines of length
w. All characters are either ‘B’ or ‘W’, representing a black or a white pixel respectively.

Image descriptions are given in the order from 0 to d − 1. Descriptions are separated by an empty line.

Output

Return a correct program for the robot with minimal possible worst-case execution time. If there are
multiple possible programs, output any of them.

All whitespace is ignored when parsing a program.

Page 10 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Example

image.in image.out
3 5 4
WBBW
BWWB
BWWB
BWWB
WBBW

WWBW
WBBW
BWBW
WWBW
WWBW

WBBW
BWWB
WWBW
WBWW
BBBB

D(1:D(2:0))

The robot has to distinguish between these three images in the example.

Page 11 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem J. Jealous Numbers
Input file: jealous.in
Output file: jealous.out
Time limit: 3 seconds
Memory limit: 256 megabytes

There is a trouble in Numberland, prime number p is jealous of another prime number q. She thinks
that there are more integer numbers between a and b, inclusively, that are divisible by greater power of
q than that of p. Help p to get rid of her feelings.

Let α(n, x) be maximal k such that n is divisible by xk. Let us say that a number n is p-dominating
over q if α(n, p) > α(n, q). Find out for how many numbers between a and b, inclusive are p-dominating
over q.

Input

The first line of the input file contains a, b, p and q (1 ≤ a ≤ b ≤ 1018; 2 ≤ p, q ≤ 109; p 6= q; p and q are
prime).

Output

Output one number — how many numbers n between a and b, inclusive, are p-dominating over q.

Example

jealous.in jealous.out
1 20 3 2 4

In the given example 3, 9, 15 and 18 are 3-dominating over 2.

Page 12 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Problem K. Kripke Model

Input file: kripke.in
Output file: kripke.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Testing and quality assurance are very time-consuming stages of software development process. Different
techniques are used to reduce cost and time consumed by these stages. One of such techniques is software
verification. Model checking is an approach to the software verification based on Kripke models.

A Kripke model is a 5-tuple (P, S, S0, R, L), where P is a finite set of atomic propositions, S is a finite
set of model’s states, S0 ⊂ S is a set of initial states, R ⊂ S × S is a transition relation, and L ⊂ S × P
is a truth relation. In this problem we will not take initial states into account and relation R will be a
reflexive relation, so R(s, s) will be true for all states s ∈ S.

A path π beginning in state s in the Kripke model is an infinite sequence of states s0s1 . . . such that
s0 = s, and for each i ≥ 0 the (si, si+1) ∈ R.

Temporal logic and its subset Computational tree logic (CTL) are used to describe propositions qualified
in terms of time. Kripke models are often used to check properties, described in CTL.

There are two types of formulae in CTL: state formulae and path formulae. The values of state and path
formulae are evaluated for states and paths correspondingly.

If p ∈ P then p is a state formula that holds in state s iff (s, p) ∈ L.

If f is a path formula, then Af and Ef are state formulae, where A and E are path quantifiers:
• Af holds in a state s, iff f holds for each path beginning in the state s;
• Ef holds in state s, iff there exists a path π, beginning in the state s, such that f holds for π.

If f and g are state formulae, then Gf and fUg are path formulae, where G and U are temporal
operators:

• Gf (Globally) holds for a path π = s0s1 . . . iff for each i ≥ 0 the formula f holds in the state si;
• fUg (Until) holds for a path π = s0s1 . . . if there exists i ≥ 0 such that f holds for each state in

the range s0, s1, . . . , si−1, and g holds in state si;

To verify a property described by a state formula f means to find all states, f holds for. Verification of
an arbitrary property is a pretty complex problem. Your problem is much easier — you are to write a
program that verifies a property described by a temporal logic formula E(xU(AGy)), where x and y are
some atomic propositions.

Input

The first line of the input file contains three positive integer numbers n, m and k — number of states,
transitions and atomic propositions (1 ≤ n ≤ 10 000; 0 ≤ m ≤ 100 000; 1 ≤ k ≤ 26).

The following n lines describe one state each. The state i (1 ≤ i ≤ n) is described by ci — a number of
atomic propositions which are true for this state and a space-separated list of these atomic propositions
(0 ≤ ci ≤ k). Atomic propositions are denoted by first k small English letters.

Next m lines describe transitions. Each of them contains two integer numbers s and t (1 ≤ s, t ≤ n;
s 6= t) — the transition from state s to state t. The verified Kripke model contains implicit loop transitions
(s, s) for each state s (they are not listed in the input file). No transition is listed in the input file twice.

The last line of the input file contains the formula of the property to be verified. This formula always
has the form “E(xU(AGy))”, where ‘x’ and ‘y’ are some atomic propositions.

Output

The first line of the output file must contain the number of states for which the verified property holds.
The following lines must contain the numbers of these states listed in increasing order.

Page 13 of 14

ACM ICPC 2009–2010, NEERC, Northern Subregional Contest
St Petersburg, October 17, 2009

Example

kripke.in kripke.out
7 8 2
1 a
1 a
2 a b
1 b
1 b
1 a
1 a
1 2
2 3
3 4
4 5
5 3
2 6
6 7
7 6
E(aU(AGb))

5
1
2
3
4
5

Page 14 of 14

