
Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem A. Number of paths in acyclic graph

Input file: countpaths.in

Output file: countpaths.out

You are given an oriented acyclic graph. Find the number of distinct paths from vertex 1 to vertex n.

Input
First line of the input file contains two integer numbers n and m — number of vertices and edges in the
graph (2 ≤ n ≤ 105, 2 ≤ m ≤ 2 · 105).
Each of the following m lines contains two integer numbers: numbers of vertices connected by the
corresponding edge.

Output
Output the number of distinct paths from vertex 1 to vertex n taken modulo 109 + 7.

Sample input and output

countpaths.in countpaths.out

4 4

1 2

1 3

3 2

2 4

2

Page 1 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem B. Knapsack

Input file: knapsack.in

Output file: knapsack.out

You are given n items with masses m1, . . . ,mn and costs c1, . . . , cn respectively.

The knapsack can hold items with total mass up to m. You are to find the set of items having the
maximal possible total cost which can be held by the knapsack.

Input
First line of the input file contains a positive integer number n not exceeding 1000 and positive integer
number m not exceeding 10000.

Second line contains n positive integer numbers mi, each of them does not exceed 100.

Third line contains n positive integer numbers ci, each of them does not exceed 100.

Output
Output the number of items in the set in the first line.

Second line must contain numbers of these items (ranging from 1 to n).

Sample input and output

knapsack.in knapsack.out

4 6

2 4 1 2

7 2 5 1

3

1 3 4

Page 2 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem C. Longest common subsequence

Input file: lcs.in

Output file: lcs.out

You are given two sequences. Find their longest common subsequence.

Input
First line of the input file contains an integer number N — length of the first sequence (1 ≤ N ≤ 2000).
Second line contains N numbers — the first sequence. All sequence elements do not exceed 109 by
absolute value.

Third line of the input file contains an integer number M — length of the first sequence (1 ≤ M ≤ 2000).
Fourth line contains M numbers — the second sequence. All sequence elements do not exceed 109 by
absolute value.

Output
Output the length of the longest common subsequence in the first line. Output the subsequence in the
second line. If there are several longest common subsequnces — output any of them.

Sample input and output

lcs.in lcs.out

3

1 2 3

4

2 3 1 5

2

2 3

Page 3 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem D. Levenshtein distance
Input file: levenshtein.in

Output file: levenshtein.out

Consider a string and a set of operations:

• Substitute one character of the string.

• Delete one character from any position of the string.

• Insert one character in any position of the string.

E.g., using first operation one can transform “ABC” to “ADC”, using second — to “AC”, using third —
to “ACBC”.

Minimal number of such operations needed to transform one string to the other is called the Levenshtein
distance.

You are given two strings. Find the Levenshtein distance between them.

Input
Input file contains two lines each of the containid one of the given strings. Lengths of these strings do
not exceed 5000 and strings consist only from capital Latin letters.

Output
Output one number — the Levenshtein distance.

Sample input and output

levenshtein.in levenshtein.out

ABCDEFGH

ACDEXGIH

3

Page 4 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem E. Longest increasing subsequence

Input file: lis.in

Output file: lis.out

You are given a sequence of numbers. Find its longest increasing subsequence.

Input
First line of the input file contains an integer number N — length of the sequence (1 ≤ N ≤ 2000).
Second line contains N numbers — the sequence. All sequence elements do not exceed 109 by absolute
value.

Output
Output the length of the longest increasing subsequence in the first line. Output the subsequence in the
second line. If there are several longest increasing subsequnces — output any of them.

Sample input and output

lis.in lis.out

6

3 29 5 5 28 6

3

3 5 28

Page 5 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem F. Maximal weight matching in tree

Input file: matching.in

Output file: matching.out

Matching is a subset of graph edges such that no two edges in it share a vertex

You are given a weighted tree. You are to find the maximum weight matching in it.

Input
First line contains an integer number n — number of vertices in tree (2 ≤ n ≤ 105).

Each of the following (n − 1) lines describes an edge and contains three numbers: numbers of vertices
connected by this edge and the weight wi (1 ≤ wi ≤ 109).

Output
Output one number — the weight of maximal weight matching in the given tree.

Sample input and output

matching.in matching.out

4

1 2 10

1 3 1

3 4 1

11

Page 6 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem G. Matrix multiplication

Input file: matrix.in

Output file: matrix.out

Matrix product is said to be fully parenthized if one of the following holds:

• It consists of one matrix.

• It is a put in parentheses product of two fully parenthized products.

A full parenthezation is called optimal if the number of operations needed to calculate the product is
minimal possible.

You are to find the optimal full parenthezation for matrix product.

Input
First line of the input file contains an integer number n — number of matrices (1 ≤ n ≤ 400).

Each of the following n lines contains two integer numbers ai and bi — number of rows and columns in
the i-th matrix, respectively (1 ≤ ai, bi ≤ 100).

It is guaranteed that bi = ai+1 for each 1 ≤ i ≤ n− 1

Output
Output the optimal parenthezation. If there are several of them, output any.

Sample input and output

matrix.in matrix.out

3

10 50

50 90

90 20

((AA)A)

Note
In this case there are two possible parenthezations: ((AA)A) (A(AA)). The number of operations is
10 · 50 · 90+ 10 · 90 · 20 = 63000 for the first one, and 10 · 50 · 20+ 50 · 90 · 20 = 100000 for the second one.

Page 7 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem H. Longest subpalindrome

Input file: palindrome.in

Output file: palindrome.out

Palindrome is a string which reads the same from both directions.

Subpalindrome is a sequence of characters from the string (not necessarily consecutive) which is a palin-
drome. E.g., “HELOLEH” is a subpalindrome of “HTEOLFEOLEH”.

You are to find the longest subpalindrome of the given string.

Input
Input file contains a string of capital Latin letters. Its length do not exceed 2000.

Output
Output the length of the longest subpalindrome on the first line. Second line must contain the maximal
subpalindrome itself. If there are several longest subpalindromes, you can output any of them.

Sample input and output

palindrome.in palindrome.out

HTEOLFEOLEH 7

HEOLOEH

Page 8 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem I. Travelling salesman problem

Input file: salesman.in

Output file: salesman.out

You are given an non-oriented weighted graph without loops and parallel edges. You are to find the path
visiting all its vertices and having the minimal weight.

Input
First line contains two integer numbers n andm— number of vertices and edges in the graph (1 ≤ n ≤ 18,

0 ≤ m ≤ n·(n−1)
2). Each of the following m lines describes one edge and contains three numbers: numbers

of vertices connected by the edge and the weight of the edge (1 ≤ ai, bi ≤ n, 1 ≤ wi ≤ 108).

Output
Output one number — weight of the path. If there no such path, output −1.

Sample inputs and outputs

salesman.in salesman.out

4 6

1 2 20

1 3 42

1 4 35

2 3 30

2 4 34

3 4 12

62

4 3

1 2 1

1 3 1

1 4 1

-1

Page 9 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem J. Brackets Subsequences

Input file: brackets.in

Output file: brackets.out

Consider bracket sequences with one type of brackets. Given a sequence of brackets, your task is to find
the number of its different subsequences that are regular brackets sequences.

For example, the sequence “((())())(” has 8 such subsequences: “((())())”, “(())()”, “((()))”,
“(()())”, “(())”, “()()”, “()”, and “”.

Input
The input file contains a sequence of brackets. The sequence is not empty, its length does not exceed 300.

Output
Output the number of its different subsequences that are regular brackets sequences.

Sample inputs and outputs

brackets.in brackets.out

((())())(8

Page 10 of 11

Harbin ACM ICPC training camp
Dynamic programming day. November 20, 2014

Problem K. String Decomposition

Input file: decomp.in

Output file: decomp.out

For a string α and an integer n define αn as the concatenation of n copies of α. For example,
aab4 = aabaabaabaab.

Each string S can be decomposed as S = Sd1
1 Sd2

2 . . . Sdk
k . There can be several ways to make such

decomposition. The weight of the decomposition is the sum |S1|+ |S2|+ . . .+ |Sk| where |Z| is the length
of the string Z.

Given S find its decomposition which has the minimal possible weight.

Input
The input file contains the string S. S contains only capital letters of the English alphabet, its length
doesn’t exceed 5 000.

Output
The first line of the output file must contain w — the minimal possible weight of the decomposition of
S. Let k be the number of elements in the optimal decomposition. The following k lines must contain
two elements each — Si and di separated by a space.

If there are several optimal decompositions, describe any one.

Sample input and output

decomp.in decomp.out

ABABAAABABA 5

AB 2

A 3

BA 2

Page 11 of 11

