
Harbin ACM ICPC training camp
Dynamic programming compilation.

Problem A. Coincidence
Input file: maxcon.im

Output file: maxcom.out

Time limit: 1 second
Memory limit: 64 megabytes

Common subsequence of two strings s1 and s2 is a pair of se-
quences of indices ({ai}, {bi}) such that a1 < a2 < . . . < ak,
b1 < b2 < . . . < bk, and s1[ai] = s2[bi] for all 1 ≤ i ≤ k.

Find a longest common subsequence of two strings.

Input

First and second line of an input file contain two strings of French
lowercase characters a. . . z. There are no spaces before, inside or
after the strings. Lengths of strings do not exceed 100.

Output

In the first line of output file output k – the length of a longest
common subsequence. On the second line output k numbers –
indices of a common subsequence in the first input string. On the
third line output the same for the second input string. Index of
the first character in the string is 1. Indices should be output in
ascending order.

Example

maxcon.im maxcom.out

abcd

cxbydz

2

3 4

1 5

Problem B. Longest Common Subpair
Input file: subpair.in

Output file: subpair.out

Time limit: 2 seconds
Memory limit: 64 megabytes

A pair of strings (α, β) is called a subpair of a string γ if
γ = γ1αγ2βγ3 for some (possibly empty) strings γ1, γ2 and
γ3. The length of the pair is the sum of lengths of its strings:
|(α, β)| = |α|+ |β|.

Given two strings ξ and η find their longest common subpair, that
is — such pair (α, β) that it is a subpair of both ξ and η and its
length is greatest possible.

Input

Input file contains two strings ξ and η, one on a line. Both strings
contain only small letters of the English alphabet. Both string
are not empty. The length of each string doesn’t exceed 3000.

Output

Output α on the first line of the output file and β on the second
line.

Example

subpair.in subpair.out

abacabadabacaba

acabacadacabaca

acaba

abaca

ab

bc

b

Problem C. Little Brackets
Input file: brackets.in

Output file: brackets.out

Time limit: 2 seconds
Memory limit: C

onsider all regular bracket sequences with one type of brackets.
Let us call the depth of the sequence the maximal difference be-
tween the number of opening and the number of closing brackets
in a sequence prefix. For example, the depth of the sequence
“()()(())” is 2, and the depth of “((()(())()))” is 4.

Find out the number of regular bracket sequences with n opening
brackets that have the depth equal to k. For example, for n = 3
and k = 2 there are three such sequences: “()(())”, “(()())”,
“(())()”.

Input

Input file contains several test cases. Each test case is described
with n and k (1 ≤ k ≤ n ≤ 50).

Last testcase is followed by two zeroes. They should not be pro-
cessed.

Output

For each testcase output the number of regular bracket sequences
with n opening brackets that have the depth equal to k.

Separate output for different testcases by a blank line. Adhere to
the format of the sample output.

Example

brackets.in brackets.out

3 2

37 23

0 0

Case 1: 3

Case 2:

203685956218528

Problem D. Travelling Salesman Returns!
Input file: salesman.in

Output file: salesman.out

Time limit: 10 seconds
Memory limit: 64 megabytes

Travelling Salesman plans to return to the Alpha Centauri system!
All the people wait it! They want new best goods from other
systems!

But the Salesman as usual wants to minimize the travel expenses.
He selects any starting planet, flies there on the intergalactic
spaceship, visits all planets in the system in order which mini-
mizes the total cost, and then flies on the intergalactic spaceship
away. Of course he does not want to visit any planet more than
once. Your task is to calculate the optimal route for the Salesman.
The people can wait no longer!

Input

The Alpha Centauri system contains n planets. This number is
written on the first line of the input file (1 ≤ n ≤ 19). The next n
lines contain n numbers each: j-th number of the i-th line is the
travel cost from i-th planet to j-th. The numbers are separated by
spaces. Numbers aii should be ignored. All numbers are positive
integers which do not exceed 108.

Output

Output the minimal total cost in the first line. In the second

Page 1 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

line output n numbers — the route on which the total cost is
minimized.

Example

salesman.in salesman.out

3

8 1 6

3 5 7

4 9 2

5

3 1 2

Problem E. Long Dominoes
Input file: dominoes.in

Output file: dominoes.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Find the number of ways to tile an m × n rectangle with long
dominoes — 3× 1 rectangles.

Each domino must be completely within the rectangle, dominoes
must not overlap (of course, they may touch each other), each
point of the rectangle must be covered.

Input

The input file contains m and n (1 ≤ m ≤ 9, 1 ≤ n ≤ 30).

Output

Output the number of ways to tile an m× n rectangle with long
dominoes.

Example

dominoes.in dominoes.out

3 3 2

3 10 28

Problem F. Holidays
Input file: holidays.in

Output file: holidays.out

Time limit: 2 seconds
Memory limit: 64 megabytes

You must know that our country is well known for its strange holi-
days system. We celebrate anything we can, and often new public
holidays are announced, though sometimes some are cancelled.

In year 3141 some archeologists have discovered the document
that they consider to be the log of changes in the system of public
holidays in our country from year Ys till year Yf , inclusively. Each
record of the document has the form

<date-record>, added <date-holiday>

or
<date-record>, removed <date-holiday>

The record of the first type means that the public holiday on
<date-holiday> was announced on day <date-record>, and the
record of the second type means that the public holiday on
<date-holiday> was cancelled on day <date-record>.

Unfortunately, all dates of records only include day and month,
but not the year. Now the archeologists wonder, what maximal

number of public holidays could have been there during the years
described. Your task in this problem is to answer this question
and provide the version of the document with years inserted, that
would guarantee this number of the holidays.

You must assume that all records in the document are in the
chronological order and that there were no day when two different
events took place, that is, all dates of records in the document
must be different.

Note that if the holiday was announced on its own day, the year it
is announced there is no public holiday on this date. Analogously,
if the holiday is cancelled on its own day, there is still the holiday
this year (so people do not have to go to work after listening to
morning radio programs).

Also recall, that the day of February 29 exists only in leap years,
that is, years that are divisible by 4, except those divisible by 100,
except those divisible by 400. For example, years 1996, 2000 and
2004 are leap, while 1999 or 2100 are not.

Input

The first line of the input file contains Ys and Yf

(1800 ≤ Ys ≤ Yf ≤ 2200, Yf − Ys ≤ 100). Next line contains
n — the number of records in the document (1 ≤ n ≤ 100).
Next n lines contain the the document records, one on a line. See
sample input for more detailed information.

You must not consider any other holidays except those explicitly
specified in the document. You may assume that no holiday is
removed before it is announced.

Output

On the first line of the output file print the maximal number of
public holidays for the given period. After that print n lines —
the version of the document with years inserted that provides the
specified number of holidays. Adhere to the format of the sample
output.

If it is impossible to interpret the document in the specified way,
print −1 on the first and the only line of the output file.

Example

holidays.in holidays.out

1900 1999

9

January 1, added

January 1

January 1, added

January 7

February 29, added

February 29

November 7, added

November 7

November 7, removed

January 7

September 1, added May

1

August 21, removed

November 7

September 1, added

June 12

September 1, added

December 12

406

January 1 1900, added

January 1

January 1 1901, added

January 7

February 29 1904,

added February 29

November 7 1904, added

November 7

November 7 1905,

removed January 7

September 1 1906,

added May 1

August 21 1907,

removed November 7

September 1 1907,

added June 12

September 1 1908,

added December 12

Page 2 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Problem G. Fibonacci Subsequence
Input file: fibsubseq.in

Output file: fibsubseq.out

Time limit: 3 seconds
Memory limit: 64 megabytes

A sequence of integer numbers a1, a2, . . . , an is called a Fibonacci
sequence if ai = ai−2 + ai−1 for all i = 3, 4, . . . , n.

Given a sequence of integer numbers c1, c2, . . . , cm you have to
find its longest Fibonacci subsequence.

Input

The first line of the input file contains m (1 ≤ m ≤ 3 000). Next
line contains m integer numbers not exceeding 109 by their abso-
lute value.

Output

On the first line of the output file print the maximal length of the
Fibonacci subsequence of the given sequence. On the second line
print the subsequence itself.

Example

fibsubseq.in fibsubseq.out

10

1 1 3 -1 2 0 5 -1 -1 8

5

1 -1 0 -1 -1

Problem H. Dowry
Input file: dowry.in

Output file: dowry.out

Time limit: 2 seconds
Memory limit: 256 megabytes

The daughter of the King of Flatland is going to marry the beau-
tiful prince. The prince is going to give the generous dowry for the
King’s daughter, but he is unsure which jewels from his collection
to give.

There are n jewels in the collection of the prince, each jewel is
characterized by its weight wi and its value vi. Prince would like
to give as valuable dowry to the King as possible. But the King
is wise and he would accept the jewels only if their total weight
doesn’t exceed R. On the other side the prince would consider
himself greedy for the rest of his life if he gave the jewels with the
total weight less than L.

Help the prince to choose jewels from his collection so that their
total weight was between L and R (inclusive), and the total value
of the selected jewels was maximal possible.

Input

The first line of the input file contains n (1 ≤ n ≤ 32), L and
R (0 ≤ L ≤ R ≤ 1018). The following n lines describe jewels
and contain two numbers each — the weight and the value of the
corresponding jewel (1 ≤ wi, vi ≤ 1015).

Output

The first line of the output file must contain k — the number
of jewels to present to the king. The second line must contain k
integer numbers — the numbers of jewels. Jewels are numbered
from 1 to n in order they are given in the input file.

If it is impossible to choose the jewels, output 0 at the first line
of the output file.

Example

dowry.in dowry.out

3 6 8

3 10

7 3

8 2

1

2

Problem I. Order-Preserving Codes
Input file: codes.in

Output file: codes.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Binary code is a mapping of characters of some alphabet to the
set of finite length bit sequences. For example, standard ASCII
code is a fixed length code, where each character is encoded using
8 bits.

Variable length codes are often used to compress texts taking into
account the frequencies of occurence of different characters. Char-
acters that occur more often get shorter codes, while characters
occuring less often — longer ones.

To ensure unique decoding of variable length codes so called pre-
fix codes are usually used. In a prefix code no code sequence is
a proper prefix of another sequence. Prefix code can be easily
decoded scanning the encoded sequence from left to right, since
no code is the prefix of another, one always knows where the code
for the current character ends and the new character starts.

Among prefix codes, the optimal code is known, so called Huffman
code. It provides the shortest possible length of the text among all
prefix codes that separatly encode each character with an integer
number of bits.

However, as many other codes, Huffman code does not preserve
character order. That is, Huffman codes for lexicographically or-
dered characters are not necessarily lexicographicaly ordered.

In this problem you are asked to develop a prefix code that would
be optimal for the given text among all order-preserving prefix
codes. Code is called order-preserving if for any two characters the
code sequence for the character that goes earlier in the alphabet
is lexicographically smaller.

Since text itself is not essential for finding the code, only the
number of occurences of each character is important, only this
data is given.

Input

The first line of the input file contains n — the number of char-
acters in the alphabet (2 ≤ n ≤ 2000). The next line contains
n integer numbers — the number of occurences of the characters
in the text for which the code must be developed (numbers are
positive and do not exceed 109). Characters are described in the
alphabetical order.

Output

Output n bit sequences, one on a line — the optimal
order-preserving prefix code for the described text.

Page 3 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Example

codes.in codes.out

5

1 8 2 3 1

00

01

10

110

111

Problem J. Prime Sum
Input file: prime.in

Output file: prime.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Let us consider a representation of a positive integer number n as
a sum of one or more integer numbers:

n = x1 + x2 + . . .+ xk.

Let us call such sum prime, if all terms in it are pairwise relatively
prime. Recall, that x and y are called relatively prime, if their
greatest common divisor is 1.

Given n, find the number of ways it can be represented as a prime
sum. The ways that differ only by the order of the terms are con-
sidered the same. For example, there are six such representation
for n = 5:

5 = 5

5 = 4 + 1

5 = 3 + 2

5 = 3 + 1 + 1

5 = 2 + 1 + 1 + 1

5 = 1 + 1 + 1 + 1 + 1

Input

Input file contains one number n (3 ≤ n ≤ 150).

Output

Print one number — the number of ways n can be represented as
a prime sum.

Example

prime.in prime.out

5 6

Problem K. Pipe Layout
Input file: pipe.in

Output file: pipe.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The city is building a centralized heating system in some of the
city districts. City district occupies rectangular area and consists
of square blocks arranged in a grid. Centralized heating system is
a closed circuit of pipes that will be used to run hot water through
every block in the district. The city council is considering different
layouts of pipes for each district. In order to minimize the total
length of pipes but still provide hot water to every block in the
district, exactly one pipe must run through every block. A pipe
in every block must be connected to the pipes in two neighboring
blocks. So, there are at most six possible pipe configurations in
every block:

In order to plan their planning activities, the city council wants to
know the number of different possible pipe layouts for a given city
district. For example, there are exactly 6 different pipe layouts
for a district with 16 blocks arranged into 4 by 4 grid:

Input

The input file contains two integer numbers r (r > 1) and c
(c > 1). They specify, correspondingly, the number of rows and
columns of blocks in the district. The total number of blocks in
a district does not exceed 100 (r × c ≤ 100).

Output

Output the number of different possible pipe layouts for this dis-
trict.

Examples

pipe.in pipe.out

4 4 6

5 7 0

2 8 1

12 8 102283239429

Problem L. Die Young
Input file: young.in

Output file: young.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Young diagram is a well known way to describe a partition
of a positive integer number. A partition of a number n is
a representation as a sum of one or several integer numbers
n = m1 +m2 + . . .+mk where m1 ≥ m2 ≥ . . . ≥ mk.

A diagram consists of n boxes arranged in k rows, where k is the
number of terms in the partition. A row representing the number
mi contains mi boxes. All rows are left-aligned, and sorted from
longest to shortest.

The diagram on the picture below corresponds to the partition
10 = 5 + 3 + 2.

Page 4 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Sometimes it is possible to inscribe one Young diagram into the
other. Diagram X can be inscribed into the diagram Y if it is
possible to delete some boxes from diagram Y so that it turns to
diagram X. Note that it is only allowed to remove some boxes,
it is not allowed to rotate or flip the diagram. For example, the
picture below shows that the diagram for 5 = 3+2 can be inscribed
into the diagram for 10 = 5 + 3 + 2.

On the other hand, for example, it is impossible to inscribe the
diagram for 8 = 4 + 4 into the diagram for 10 = 5 + 3 + 2.

Given n, your task to find such partition of n that the correspond-
ing Young diagram has the greatest possible number of diagrams
that can be inscribed into it.

For example, there are 36 Young diagrams that can be inscribed
into the diagram for 10 = 5+3+2. However, it is not the maximal
possible value. The diagram for 10 = 4 + 2 + 2 + 1 + 1 has the
better value, there are 41 diagrams that can be inscribed into it.

Input

Input file contains n (1 ≤ n ≤ 100).

Output

At the first line of the output file print the maximal number of
Young diagrams that can be inscibed into some Young diagram
for the partition of n.

At the second line print one or more integer numbers — the num-
ber of boxes in each row of the optimal diagram.

Examples

young.in young.out

10 41

4 2 2 1 1

Problem M. Finite Automata
Input file: automata.in

Output file: automata.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The Broken Tiles company has designed a robot for tiling the
roads. The robot has an infinite supply of pavement tiles, each of
which has the size of 2 × 1 feet. The roads to tile have a size of
m× n feet. Here m is the width of the road, and n is the length
of the road.

The program for the robot is the sequence of the commands.
There are three commands: ‘H’, ‘V’ and ‘S’. The robot consid-
ers the road to tile consisting of m × n unit squares. The road
runs from west to east.

The robot begins the execution of the program standing in the
north-western square of the road. Each step it considers the cur-
rent command. If it is ‘H’, the robot puts the tile horizontally
— the longer side from east to west, the western square of the
tile occupies the current square. If the command is ‘V’, the robot
puts the tile vertically — the longer side from north to south, the
northern square of the tile occupies the current square. Finally, if
the command is ‘S’, the robot does nothing on the current square.

After executing the command, the robot moves one square south-
wards. If it crosses the border of the road, it moves one square
eastwards, and moves to the northern square of the new column.

The road is said to be tiled correctly, if all of its squares are
covered by the tiles, and no tiles overlap each other or cross the
border of the road. The program is said to be correct for m, if it
causes the robot to tile the m× n road correctly for some n, and
after finishing the execution of the program the robot steps out
of the southeastern corner of the road. For example, the program
“HHSS” is correct for 2 (it correctly tiles the road for n = 2). The
program “HHV”, in turn, is incorrect for 2 for two reasons: first
two tiles overlap with the third tile, and the robot does not leave
the road in the end of the program for any n.

The designers of the company asked the main programmer of the
company to write the program that would verify the correctness
of the program for the robot.

But the main programmer of the company has recently learned
the theory of finite automata and decided that everything should
be programmed using finite automata only. Fortunately, it turned
out, that for each m there indeed exists a finite automaton that
accepts those and only those strings that form a correct for m
program for the robot.

But the main programmer has gone to the Open Automata Docu-
mentation summit, leaving you alone with his ideas. The design-
ers (and, more important, managers) are waiting for the verifica-
tion automaton. So given m, you have to create a finite automa-
ton for recognizing the correct programs. Since this is a business
project, the automaton must be deterministic.

Recall, that the deterministic finite automaton (DFA) is an or-
dered set ⟨Σ, U, s, T, φ⟩ where Σ is the finite set called input al-
phabet (Σ = {H, V, S} in our case), U is the finite set of states,
s ∈ U is the initial state, T ⊂ U is the set of terminal states and
φ : U × Σ → U is the transition function.

The input of the automaton is the string α over Σ. Initially the
automaton is in state s. Each step it reads the first character c
of the input string and changes its state to φ(u, c) where u is the
current state. After that the first character of the input string is
removed and the step repeats. If the automaton is in the terminal
state after its input string is empty, it accepts the initial string α,
in the other case it rejects it.

Input

The input file contains m (1 ≤ m ≤ 10).

Output

The first line of the output file must contain u — the number
of states of the automaton, and s — the initial state (states are
numbered from 1 to u). The number of states must not exceed
20 000.

The second line must contain t — the number of terminal states,
followed by t integer numbers — the terminal states themselves.

The following u lines must contain three numbers each — the i-th
of these lines must contain φ(i,H), φ(i, V), and φ(i, S).

Page 5 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Example

automata.in automata.out

2 5 1

1 1

2 3 4

5 4 4

4 4 1

4 4 4

4 4 3

Problem N. Solid Tilings
Input file: solid.in

Output file: solid.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The Broken Tiles company’s new offer promises its rich clients to
pave their rectangular yards with nice 2× 1 and 1× 2 pavement
tiles.

The tiling is called solid if it is not possible to split the tiled
rectangle by a straight line, not crossing the interior of any tile.
For example, on the picture below the tilings (a) and (b) are solid,
while the tilings (c) and (d) are not.

(a) (b)

(c) (d)

Now the managers of the company wonder, how many different
solid tilings exist for an m× n rectangle. Help them to find that
out.

Input

The input file contains m and n (1 ≤ m ≤ 8, 1 ≤ n ≤ 16).

Output

Output one integer number — the number of solid tilings of m×n
rectangle with 2× 1 and 1× 2 pavement tiles.

Example

solid.in solid.out

2 2 0

5 6 6

All solid tilings for the 5×6 rectangle are provided on the picture
below:

Problem O. Paragraph Formatting
Input file: formatting.in

Output file: formatting.out

Time limit: 4 seconds
Memory limit: 64 megabytes

Mocrosoft company is developing the new publishing software.
You are responsible for the module that will do a paragraph lay-
out. You must split the paragraph into lines so that it looked
nice.

The paragraph layout problem is well studied, and there are many
models that define the value to optimize. One of the most ugly
artefacts of the text is the “road” of whitespaces that occurs if
three or more whitespaces are one above the other. So the cus-
tomers asked that the software must avoid such situations as much
as possible. This is the problem you must now solve.

You are given one paragraph and must split it into lines to mini-
mize the penalty. The paragraph consists of words. The words are
separated by spaces and line feeds. You are not allowed to break
words and use hyphenation. The penalty is defined as the sum
of lengths of whitespace intervals, such that there is a whitespace
immediately above it, and whitespace immediately below it.

All lines except the last one must contain at least two words. The
sum of the lengths of the words must not exceed p− c+ 1 where
p is text width, and c is the number of words. The first word of
the line is aligned to the left, the last word — to the right. All
other words are located in such a way, that all whitespaces have
equal width. Since this is the modern software, whitespaces may
have a fractional length. However, we consider all characters to
have the same width equal to one.

The last line may contain one or more words. Again, the sum of
the lengths of the words must not exceed p− c+1 where p is text
width, and c is the number of words. The first word of the line
is aligned to the left. All other words are located in such a way,
that all whitespaces have the width equal to one. The whitespace
in the end of the last line is not considered when calculating the
penalty.

Input

The first line of the input file contains p — the text width
(6 ≤ p ≤ 80). The rest of the file contains the paragraph text
— a sequence of words separated by spaces and line feeds. All
words consist of 1 to ⌊(p−1)/2⌋ characters with ASCII codes from
33 to 255. The total length of the text does not exceed 5000 char-
acters. The number of words does not exceed 100. The number
of short words does not exceed 50 (the word is called short if it
contains at most three letters).

Page 6 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Output

Output one real number — the minimal penalty of the layed out
text. You answer must be accurate up to 10−4.

Example

formatting.in formatting.out

28

From thousands of teams taking part in regional

contests all around the world seventy eight teams

will

advance to the 2006 ACM International Collegiate

Programming

Contest World Finals that will take place in April,

in San-Antonio, Texas.

1.75

Problem P. Do It Yourself
Input file: doityourself.in

Output file: doityourself.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The Neverplay company is preparing a new Do It Yourself con-
structor set for children from elementary school. The main part
of the constructor is the electronic device that has a quite com-
plicated wires connection scheme.

The wires that are used in the connection scheme have a form of a
rooted tree with connection plugs at nodes. The board containing
the connection points that must be connected by the wires, has
a picture of the tree on it, so it seems quite easy to lay down the
wires. Also, the root node of the wires tree has a special form, so
the player can always distinguish it from all other nodes.

However, all nodes except the root look quite similar, and the
information on board is not always enough to connect everything
correctly. For example, let us consider the tree shown on the
picture below. The picture on the left shows the board. The
picture on the right shows the wires tree. Its nodes are numbered
for explicitness.

1

2

3 4

5

6

7

8

9

There are two ways the tree can be used to connect the connection
points on the board, they are shown on the following picture.

1

2

3 4

5

6

7

8

9

1

6

9 7

8

2

4

5

3

The Neverplay developers do not want such ambiguities to exist.
They could, of course, mark all connection points on the board
and the corresponding plugs of the tree with the same characters.
But they want the player to have some challenge when connecting
the scheme. So they decided to color the nodes of the tree and
the connection points on the boards with several colors. When
connecting the scheme the plug at a node of the tree must be
inserted into a connection point on the board that has the same
color. There must be a unique way to do so.

Now the developers wonder what is the minimal number of col-
ors needed to resolve all ambiguities. The scheme shown on the
picture above needs two colors, as shown on the following picture.

1

2

3 4

5

6

7

8

9

1

2

3 4

5

6

7

8

9

Given the wires tree, find out how many colors are needed to mark
its nodes, as well as the corresponding connection points on the
board, so that there was a unique way to connect the scheme.

Page 7 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Input

The first line of the input file contains n — the number of nodes
of the tree (1 ≤ n ≤ 500). Let the nodes be numbered from 1 to
n, so that the number of each node’s parent is less than its own
number. The root of the tree has number 1.

The second line of the input file contains n− 1 numbers, for each
node from second to n-th it contains the number of its parent.

Output

The first line of the output file must contain a number k — the
minimal number of colors needed, so that the scheme could be
uniquely connected. The next line must contain n integer numbers
from 1 to k — the colors of the vertices.

Example

doityourself.in doityourself.out

9

1 2 2 4 1 6 7 6

2

1 1 1 1 1 2 1 1 1

Problem Q. AVL Trees
Input file: avl.in

Output file: avl.out

Time limit: 5 seconds
Memory limit: 256 megabytes

AVL trees invented by Russian scientists Adelson-Velskiy and
Landis are used for sorted collection data structure. The rooted
binary tree is called balanced if for each vertex the height of its
left subtree and the height of its right subtree differ by at most
one. The balanced binary search tree is called the AVL tree.

There can be several AVL trees with the given number of vertices.
For example, there are 6 AVL trees with 5 vertices, they are shown
on the picture below.

Also the tree with the given number of vertices can have different
height, the picture below shows AVL trees with 7 vertices that
have height 2 and 3, respectively.

Given n and h find the number of AVL trees that have n vertices
and height h. Since the answer can be quite large, return the
answer modulo 786 433.

Input

Input file contains n and h (1 ≤ n ≤ 65 535, 0 ≤ h ≤ 15)

Output

Output one number — the number of AVL trees with n vertices
that have height h, modulo 786 433.

Example

avl.in avl.out

7 3 16

Note that 786 433 is prime, and 786 433 = 3 · 218 + 1.

Problem R. 2-3 Trees
Input file: twothree.in

Output file: twothree.out

Time limit: 2 seconds
Memory limit: 64 megabytes

2-3 tree is an elegant data structure invented by John Hopcroft.
It is designed to implement the same functionality as the binary
search tree. 2-3 tree is an ordered rooted tree with the following
properties:

• the root and each internal vertex have either 2 or 3 children;

• the distance from the root to any leaf of the tree is the same.

The only exception is the tree that contains exactly one vertex
— in this case the root of the tree is the only vertex, and it is
simultaneously a leaf, i.e. has no children. The main idea of the
described properties is that the tree with l leaves has the height
O(log l).

Given the number of leaves l there can be several valid 2-3 trees
that have l leaves. For example, the picture below shows the two
possible 2-3 trees with exactly 6 leaves.

Given l find the number of different 2-3 trees that have l leaves.
Since this number can be quite large, output it modulo r.

Input

Input file contains two integer numbers: l and r (1 ≤ l ≤ 5 000,
1 ≤ r ≤ 109).

Output

Output one number — the number of different 2-3 trees with
exactly l leaves modulo r.

Example

twothree.in twothree.out

6 1000000000 2

7 1000000000 3

Page 8 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Problem S. Block Edit Distance
Input file: block.in

Output file: block.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Recently TopCoder has run a Marathon Match 18 that was in-
tended to support Wikipedia project. The problem that was sug-
gested to the participants had a subproblem — to find a specially
defined edit distance between the two words. In this problem we
will consider a simplified version of the MM18 problem, but unlike
in the Marathon Match we will require the exact solution.

You are given two words S and T . First you are allowed to choose
some non-intersecting subwords of S and remove them. Each
subword you remove costs you b. Let the resulting word be Z.

After that you must find a standard edit distance between Z and
T . To do it, you must find the instruction sequence that converts
Z to T . The allowed instructions are “I” — insert, “D” — delete,
and “C” — copy.

Consider that you have two pointers, initially the first pointer is
at the first character of Z and the second pointer is at the first
character of T . “I” instruction moves the second pointer one
character to the right. “D” instruction moves the first pointer one
character to the right. “C” instruction is applicable only when
the two pointers are at equal characters, it moves both pointers
one character to the right. Each “I” instruction costs i, each “D”
instruction costs d, each “C” instruction costs c.

Find the way to transform S to T in the described way with the
smallest cost.

Input

The first line of the input file contains four integer numbers: b,
i, d and c (0 ≤ b, i, d, c ≤ 10 000). The second line contains S.
The third line contains T . The length of each of S and T doesn’t
exceed 3 000.

Output

The first line of the output file must contain K — the cost of
converting S to T in the described way. The second line must
contain n — the number of subwords of S to be removed to form
Z. The following n lines must contain two integer numbers each —
the inclusive ranges of subwords in S to be removed. Characters
are numbered from 1.

The last line must contain the sequence of instructions to convert
Z to T .

Example

block.in block.out

3 1 1 0

ABCDEFGHIJKLMN

BCDEFZZZZKLM

9

1

7 10

DCCCCCIIIICCCD

Problem T. Discount
Input file: discount.in

Output file: discount.out

Time limit: 2 seconds
Memory limit: 256 megabytes

The Megga Mall is running a special discount program for its
customers. Each customer who buys something really big in the
Mall gets n discounts for his purchase. Each discount is presented
to the customer as a gift card. The front side of the contains label

“−ai”, and the reverse side contains label “−bi%” (ai and bi are
integer numbers, they can be different for different cards).

Let the initial price of the purchase be x. To decrease the price of
the purchase the customer can use the gift cards. The cards are
used one after another in some arbitrary order. Each card can be
used in one of two possible ways: if the card has labels “−ai and
“−bi%” it can either decrease the current price of the purchase by
ai (front use), or multiply its current price by 1− bi/100 (reverse
use). All operations with the price of the purchase are performed
with the real number. If the price becomes negative, the purchase
is free for the customer.

Peter is going to buy Ferrari in the Megga Mall. The price of
Ferrari is x. Help Peter to use his cards optimally, so that the
final price of Ferrari is minimal possible.

Input

The first line of the input file contains two integer numbers: n
(1 ≤ n ≤ 50) and x (1 ≤ x ≤ 109). The following n lines describe
gift cards, each line contains two integer numbers — ai and bi
(1 ≤ ai ≤ 10 000, 1 ≤ bi ≤ 99).

Output

Output n lines. Lines must describe the gift cards in order they
must be used. Each line must contain the number of the card
followed by the word “front” if the card must be used with front
label (“−ai”) or the word “reverse”, if the card must be used
with reverse label (“−bi%”).

The final price calculated with your answer must be accurate
within 10−9 of the optimal price (absolute or relative).

Example

discount.in discount.out

3 1000

10 1

20 1

10 2

3 reverse

1 front

2 front

After applying the third card, Peter gets 2% discount which is
20, so the price becomes 980. After that he uses first and second
cards in any order, to get a discount of another 10 + 20 = 30, so
the price becomes 950.

Problem U. School of Magic
Input file: school.in

Output file: school.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Harry Nomoretter is studying in School of Magic. Today he is
planning to start preparing for his first exam. There are four skills
that will be tested on the exam: alchemy, basic magic, chronology
of magic and demonology.

Harry’s experience in each skill can be characterized by an integer
number, ranging from 0 to a for alchemy, from 0 to b for basic
magic, from 0 to c for chronology of magic, and from 0 to d for
demonology. To pass the exam Harry must have each of his skills
maximized, that is, his alchemy skill must be equal to a, basic
magic skill equal to b, chronology of magic skill equal to c and
demonology skill equal to d. However Harry used not to visit
lectures, so now his skills are all equal to 0.

To increase his skills Harry can read textbooks. He’s got four
textbooks: “Applied Alchemy”, “Basics of Basic Magic”, “Can

Page 9 of ??

Harbin ACM ICPC training camp
Dynamic programming compilation.

Chronology Be As Easy?” and “Demonology for Dummies”.
Reading a book for an hour increases his alchemy, basic magic,
chronology of magic, or demonology skill, respectively, by one.

However, when reading books Harry abstracts from other topics,
so his other skills can also change — he can forget something he
has read, so the skill decreases, or he can recall something he
discussed with his friends before, so the skill increases. Formally,
if Harry reads “Applied Alchemy” for one hour, his alchemy skill
increases by one, and each of his basic magic, chronology of magic
and demonology skills independently uniformly randomly either
increases by one, or doesn’t change, or decreases by one, with
the exception that the skill never decreases below 0, and never
increases above its maximum (should the corresponding skill be
0 or maximal, respectively, the uniform choice is made from two
variants). Similarly, “Basics of Basic Magic” concerns Harry’s
basic magic skill, etc.

Now Harry wonders what is the expected time he needs to reach
the maximum in each of the skills if he acts optimally. Help him
to find that out.

Input

Input file contains four integer numbers: a, b, c and d
(1 ≤ a, b, c, d ≤ 4).

Output

Output one real number — the expected number of hours Harry
needs. Your answer must be accurate up to 10−6.

Example

school.in school.out

1 1 1 1 8.0

Problem V. Separable Divisions
Input file: separable.in

Output file: separable.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Consider a rectangle that consists of m× n unit squares. We can
divide it into two parts by coloring some squares white and other
squares black, so that both white and black parts are connected
(the set of squares is called connected if one can walk from any
square in the set to any other by stepping from a square to a
square that shares an edge with it).

Let us call such division separable if one can move white and black
parts as far apart from each other as desired, by continuously
moving them without overlapping. For example, the division on
the figure (a) is separable, but the division on the figure (b) is
not.

(a) Separable division. (b) Nonseparable division.

Find the number of separable divisions of the rectangle.

Input

Input file contains m and n (1 ≤ m,n ≤ 50).

Output

Output one number — the number of separable divisions of an
m× n rectangle.

Example

separable.in separable.out

4 4 470

Page 10 of ??

