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Problem Origin 

• Problem compilation from SWERC contests 

– 2010 

– 2011 

– 2012 



Problem A. Periodic Points 

• Given a function f from [0;m] to [0;m] 

– values are given for f(0), f(1), …, f(m) 

– f is piecewise linear in intervals [0;1], [1;2], … 

• fn(x) = f(f(…(f(x))…)) 

• Find the number of solutions to fn(x) = x 

– either “Infinity” 

– or the number of solutions modulo mod 



Ideas 

• If the answer is finite for f, it is finite for fn 

– will be proven later by construction 

• The answer is “Infinity” for f  
the answer is “Infinity” for fn  

• Check if for any interval [k; k+1] holds f(x) = x 

– if this is true, the answer is “Infinity” 

– otherwise, it is not. 



Ideas 

• fn is piecewise linear 

– but the number of pieces may grow exponentially 

• number of solutions to fn(x) = x in [0;m]  
is the number of intersections of the fn plot 
with the diagonal of [0;m]x[0;m] 



Ideas 

• fn consists of intervals going from y = a to: 

– y = a – 1 

– y = a + 1  



Ideas 

• Intersections between fn and the diagonal in 
the interval (k; k + 1) = sub-intervals going 
from y = k to y = k + 1 or vice-versa. 



Solution 

• Aij = number of subintervals  
between y = j and y = j+1  
contained in the graph of f in (i; i+1) 

• (An)ij = number of subintervals  
between y = j and y = j+1  
contained in the graph of fn in (i; i+1) 
– Use fast exponentiation 

• The answer for non-integer points is Trace(An) 

• + For all x = 0, 1, …, m check if fn(x) = x 

 



Problem B. Palindromic DNA 

• Transform a given DNA string (chars: A, G, C, T) 

– several pairs of characters should be equal 

– each character can be unmodified or changed: 

• cyclic order: A  G  C  T 

• A  G, T 

• G  A, C 

• C  G, T 

• T  C, A 

– cannot modify consequent characters 

 



Observation 

• For each pair of positions that should be 
equal: 

– if s[i] = s[j], need to apply same operation to both; 

– if dist(s[i]; s[j]) = 1, exactly one of them has to 
change (in the right direction); 

– if dist(s[i]; s[j]) = 2, both need to change in reverse 
directions. 



Solution: 2SAT 

• Variables: 
– xi – s[i] is changed 
– yi – s[i] is increased in the cyclic order 

•  For all pairs of positions to be equal: 
– s[i] = s[j]  (xi = xj) & (yi = yj)   

(!xi | xj) & (!xj | xi) & (!yi | yj) & (!yj | yi) 
– … 

• No two consecutive positions are changed: 
– (!x1 | !x2) & (!x2 | !x3) & … 

• Dependencies of yi on xi: 
– (x1 | !y1) & (x2 | !y2) & … 



Problem C. Jumping Monkey 

• There is a graph and a monkey in an unknown 
vertex 

• You shoot in a vertex 

– the monkey is killed, or 

– the monkey moves using a graph edge 

• What is the shortest sequences of shoots to 
kill the monkey for sure? 



Solution 

• Store the vertex set where the monkey can be 

– recalculation: O(N) shoots, O(N2) moves for each 
shoot, O(2N N3) in total 

• Bitmasks for possible moves – O(2N N2) in total 

• For current state {V1, V2, …, Vk}, compute the 
neighbors of the sets {V1}, {V1, V2}, … and the 
sets {Vk}, {Vk, Vk-1}, … Use it for everything else 

– O(N) operations for a state, O(2N N) in total 



Problem D. 3-sided Dice 

• There are three dice A, B, C with the given 
probabilities for sides 1, 2, 3 

• Is it possible to simulate the given die using 
the dice A, B and C? 

– by choosing fixed nonzero probability for each die 



Solution 

• Dice are points in 2D 

– coordinates the probabilities for sides 1 and 2 

• Dice A, B, C  a triangle 

– the triangle is degenerate (a segment)  
test if the given die is strictly inside the segment 

– the triangle is not degenerate  
test if the given die is strictly inside the triangle 

 



Problem E. Assembly Line 

• Given a list of pieces of different types 

• Assembly table 

– given two pieces of type Ti and Tj 

– it takes Cij time to assemble them 

– the resulting piece is of type Rij 

• What is the optimum time to assemble all the 
pieces? 

– cannot change their order 



Solution 

• Dynamic programming 

– Di i k = 0 if the type of i-th piece is k 

– Di i k = ∞ if the type of i-th piece is not k 

– D i j k = min {D i m a + D m j b + Ca b | Ra b = k, i ≤ m < j} 

 



Problem F. Alphabet Soup 

• There are P points on a circle,  
each may have S possible types 

• Compute the number of assignments of types 
to points, if two assignments which can be 
rotated one into another are equal 

– modulo 100000007 



Solution: Burnside lemma 

• Compute the smallest rotation that move all 
points onto some other points 

– string of angle differences D: D[i] = P[i+1] – P[i] 

– find an entity of D into DD 
which is not a prefix or a suffix 

• Full circle rotation  SP mod 100000007 

• Rotation by k 
𝑘
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Problem G. Game, Set and Match 

• Compute the probability of winning a game, a 
set and a match in tennis if each point is won 
with the probability of P 



Rule simplification 

• The simple form of rules 

– To win a game, you need to win 4 points  
by a margin of 2. 

– To win a set, you need to win 6 games  
by a margin of 2, except if the score reaches 6–6 
(tiebreak). 

– To win the tiebreak, you need to win 7 points by a 
margin of 2. 

– To win the match, you need to win 2 sets. 



Subproblems 

• a(p) – the probability of being the first to win 
two consecutive points when tied, and each 
point is won with the probability of p 

• b(n, p1, p2) – the probability of winning n 
points with a margin of two if each point is 
won with the probability of p1 and when the 
score is n–n, the probability of winning is p2. 



Winning probabilities 

• Pr[game] = b(4, p, a(p)) 

• Pr[tiebreak] = b(7, p, a(p)) 

• Pr[set] = b(6, Pr[game], Pr[tiebreak]) 

• Pr[match] = r2 + 2r(1 – r) where r = Pr[set] 

 



Computing a(p) 

• With the probability of p2 we win 

• With the probability of (1–p)2 we lost 

• With the probability of 2p(1–p) we return to 
the initial state 

• a(p) = p2 + 2p(1–p) a(p) 

• 𝑎 𝑝 =  
𝑝2

1−2𝑝(1−𝑝)
 



Computing b(n, p1, p2) 

• f(i, j) –probability of winning with score i – j. 

– f(i, j) = 1 if i ≥ n and i ≥ j + 2 

– f(i, j) = 0 if j ≥ n and j ≥ i + 2 

– f(n, n) = p2 

– f(n, n – 1) = p1 + (1 – p1)f(n, n) 

– f(n – 1, n) = p1 f(n, n) 

– f(i, j) = p1f(i + 1, j) + (1 – p1)f(i, j + 1) 

• b(n, p1, p2) = f(0, 0) 



Problem H. Non-negative Partial Sums 

• Count the number of cyclic shifts of the given 
array such that all partial sums are non-
negative 
– a[i] – the input array 

• Compute in linear time: 
– A[i] – sum of prefix of length i, B[i] – of suffix 

– C[i] = min{j ≤ i} A[j] 

– D[i] = min(a[i], a[i] + a[i + 1], …) 

• Answer: count {i | D[i] ≥ 0; B[i] + C[i – 1] ≥ 0} 



Problem I. Beehives 

• Problem: find a shortest cycle in the 
undirected graph 

• Solution: 

– start a BFS from each vertex 

– stop when you find an already visited node 



Problem J. RNA Secondary Structure 

• Given RNA – a string of {A, C, G, U}  
encoded in RLE 

• A can pair with U 

• C can pair with G 

– no more than K times 

• Pairings should not overlap 

• Find how to make maximum number of 
pairings 



Solution 

• Consider the first and last chains  
of equal symbols 
– unpairable – cut most of the chains 

– pairable – make pairings 

• What remains? 
– inner chains of equal symbols 

– small pieces of first and last chains 

• Run dynamic programming 
– A[L][R][C] – number of pairings from symbol L 

to symbol R when at most C pairs C-G can be paired 



Problem K. The Moon of Valencia 

• Given a graph with costs on vertices and on 
edges 

• You need to find a path starting and ending in 
given times at given vertices with cost equal 
to the given one. 



Problem K. The Moon of Valencia 

• SWERC judges say… 

– the problem can be solved using A* algorithm 

– the priority heuristic is |S* - G + H| 

• S* – the  required cost 

• G – the current cost 

• H – the distance to the target in the path graph 



Thank you! 

 

 

 

Thank you for your attention! 


