
Day 01: Problem Analysis

Maxim Buzdalov

ITMO University,
St. Petersburg, Russia

26.02.2014

Problem Origin

• Problem compilation from SWERC contests

– 2010

– 2011

– 2012

Problem A. Periodic Points

• Given a function f from [0;m] to [0;m]

– values are given for f(0), f(1), …, f(m)

– f is piecewise linear in intervals [0;1], [1;2], …

• fn(x) = f(f(…(f(x))…))

• Find the number of solutions to fn(x) = x

– either “Infinity”

– or the number of solutions modulo mod

Ideas

• If the answer is finite for f, it is finite for fn

– will be proven later by construction

• The answer is “Infinity” for f 
the answer is “Infinity” for fn

• Check if for any interval [k; k+1] holds f(x) = x

– if this is true, the answer is “Infinity”

– otherwise, it is not.

Ideas

• fn is piecewise linear

– but the number of pieces may grow exponentially

• number of solutions to fn(x) = x in [0;m]
is the number of intersections of the fn plot
with the diagonal of [0;m]x[0;m]

Ideas

• fn consists of intervals going from y = a to:

– y = a – 1

– y = a + 1

Ideas

• Intersections between fn and the diagonal in
the interval (k; k + 1) = sub-intervals going
from y = k to y = k + 1 or vice-versa.

Solution

• Aij = number of subintervals
between y = j and y = j+1
contained in the graph of f in (i; i+1)

• (An)ij = number of subintervals
between y = j and y = j+1
contained in the graph of fn in (i; i+1)
– Use fast exponentiation

• The answer for non-integer points is Trace(An)

• + For all x = 0, 1, …, m check if fn(x) = x

Problem B. Palindromic DNA

• Transform a given DNA string (chars: A, G, C, T)

– several pairs of characters should be equal

– each character can be unmodified or changed:

• cyclic order: A  G  C  T

• A  G, T

• G  A, C

• C  G, T

• T  C, A

– cannot modify consequent characters

Observation

• For each pair of positions that should be
equal:

– if s[i] = s[j], need to apply same operation to both;

– if dist(s[i]; s[j]) = 1, exactly one of them has to
change (in the right direction);

– if dist(s[i]; s[j]) = 2, both need to change in reverse
directions.

Solution: 2SAT

• Variables:
– xi – s[i] is changed
– yi – s[i] is increased in the cyclic order

• For all pairs of positions to be equal:
– s[i] = s[j]  (xi = xj) & (yi = yj) 

(!xi | xj) & (!xj | xi) & (!yi | yj) & (!yj | yi)
– …

• No two consecutive positions are changed:
– (!x1 | !x2) & (!x2 | !x3) & …

• Dependencies of yi on xi:
– (x1 | !y1) & (x2 | !y2) & …

Problem C. Jumping Monkey

• There is a graph and a monkey in an unknown
vertex

• You shoot in a vertex

– the monkey is killed, or

– the monkey moves using a graph edge

• What is the shortest sequences of shoots to
kill the monkey for sure?

Solution

• Store the vertex set where the monkey can be

– recalculation: O(N) shoots, O(N2) moves for each
shoot, O(2N N3) in total

• Bitmasks for possible moves – O(2N N2) in total

• For current state {V1, V2, …, Vk}, compute the
neighbors of the sets {V1}, {V1, V2}, … and the
sets {Vk}, {Vk, Vk-1}, … Use it for everything else

– O(N) operations for a state, O(2N N) in total

Problem D. 3-sided Dice

• There are three dice A, B, C with the given
probabilities for sides 1, 2, 3

• Is it possible to simulate the given die using
the dice A, B and C?

– by choosing fixed nonzero probability for each die

Solution

• Dice are points in 2D

– coordinates the probabilities for sides 1 and 2

• Dice A, B, C  a triangle

– the triangle is degenerate (a segment) 
test if the given die is strictly inside the segment

– the triangle is not degenerate 
test if the given die is strictly inside the triangle

Problem E. Assembly Line

• Given a list of pieces of different types

• Assembly table

– given two pieces of type Ti and Tj

– it takes Cij time to assemble them

– the resulting piece is of type Rij

• What is the optimum time to assemble all the
pieces?

– cannot change their order

Solution

• Dynamic programming

– Di i k = 0 if the type of i-th piece is k

– Di i k = ∞ if the type of i-th piece is not k

– D i j k = min {D i m a + D m j b + Ca b | Ra b = k, i ≤ m < j}

Problem F. Alphabet Soup

• There are P points on a circle,
each may have S possible types

• Compute the number of assignments of types
to points, if two assignments which can be
rotated one into another are equal

– modulo 100000007

Solution: Burnside lemma

• Compute the smallest rotation that move all
points onto some other points

– string of angle differences D: D[i] = P[i+1] – P[i]

– find an entity of D into DD
which is not a prefix or a suffix

• Full circle rotation  SP mod 100000007

• Rotation by k 
𝑘

𝑃
 𝑆

𝑘 gcd 𝑖,
𝑃

𝑘

𝑃

𝑘
−1

𝑖=0

Problem G. Game, Set and Match

• Compute the probability of winning a game, a
set and a match in tennis if each point is won
with the probability of P

Rule simplification

• The simple form of rules

– To win a game, you need to win 4 points
by a margin of 2.

– To win a set, you need to win 6 games
by a margin of 2, except if the score reaches 6–6
(tiebreak).

– To win the tiebreak, you need to win 7 points by a
margin of 2.

– To win the match, you need to win 2 sets.

Subproblems

• a(p) – the probability of being the first to win
two consecutive points when tied, and each
point is won with the probability of p

• b(n, p1, p2) – the probability of winning n
points with a margin of two if each point is
won with the probability of p1 and when the
score is n–n, the probability of winning is p2.

Winning probabilities

• Pr[game] = b(4, p, a(p))

• Pr[tiebreak] = b(7, p, a(p))

• Pr[set] = b(6, Pr[game], Pr[tiebreak])

• Pr[match] = r2 + 2r(1 – r) where r = Pr[set]

Computing a(p)

• With the probability of p2 we win

• With the probability of (1–p)2 we lost

• With the probability of 2p(1–p) we return to
the initial state

• a(p) = p2 + 2p(1–p) a(p)

• 𝑎 𝑝 =
𝑝2

1−2𝑝(1−𝑝)

Computing b(n, p1, p2)

• f(i, j) –probability of winning with score i – j.

– f(i, j) = 1 if i ≥ n and i ≥ j + 2

– f(i, j) = 0 if j ≥ n and j ≥ i + 2

– f(n, n) = p2

– f(n, n – 1) = p1 + (1 – p1)f(n, n)

– f(n – 1, n) = p1 f(n, n)

– f(i, j) = p1f(i + 1, j) + (1 – p1)f(i, j + 1)

• b(n, p1, p2) = f(0, 0)

Problem H. Non-negative Partial Sums

• Count the number of cyclic shifts of the given
array such that all partial sums are non-
negative
– a[i] – the input array

• Compute in linear time:
– A[i] – sum of prefix of length i, B[i] – of suffix

– C[i] = min{j ≤ i} A[j]

– D[i] = min(a[i], a[i] + a[i + 1], …)

• Answer: count {i | D[i] ≥ 0; B[i] + C[i – 1] ≥ 0}

Problem I. Beehives

• Problem: find a shortest cycle in the
undirected graph

• Solution:

– start a BFS from each vertex

– stop when you find an already visited node

Problem J. RNA Secondary Structure

• Given RNA – a string of {A, C, G, U}
encoded in RLE

• A can pair with U

• C can pair with G

– no more than K times

• Pairings should not overlap

• Find how to make maximum number of
pairings

Solution

• Consider the first and last chains
of equal symbols
– unpairable – cut most of the chains

– pairable – make pairings

• What remains?
– inner chains of equal symbols

– small pieces of first and last chains

• Run dynamic programming
– A[L][R][C] – number of pairings from symbol L

to symbol R when at most C pairs C-G can be paired

Problem K. The Moon of Valencia

• Given a graph with costs on vertices and on
edges

• You need to find a path starting and ending in
given times at given vertices with cost equal
to the given one.

Problem K. The Moon of Valencia

• SWERC judges say…

– the problem can be solved using A* algorithm

– the priority heuristic is |S* - G + H|

• S* – the required cost

• G – the current cost

• H – the distance to the target in the path graph

Thank you!

Thank you for your attention!

