

ITMO University Peking University Training Camp

ITMO大学北京大学训练营

Day 01: Problem Analysis

Maxim Buzdalov

ITMO University, St. Petersburg, Russia

26.02.2014

Problem Origin

- Problem compilation from SWERC contests
 - 2010
 - 2011
 - 2012

Problem A. Periodic Points

• Given a function *f* from [0;*m*] to [0;*m*]

- values are given for f(0), f(1), ..., f(m)

-*f* is piecewise linear in intervals [0;1], [1;2], ...

- $f^n(x) = f(f(...(f(x))...))$
- Find the number of solutions to $f^n(x) = x$
 - either "Infinity"
 - or the number of solutions modulo mod

- If the answer is finite for *f*, it is finite for *fⁿ* will be proven later by construction
- The answer is "Infinity" for f ⇔
 the answer is "Infinity" for fⁿ
- Check if for any interval [k; k+1] holds f(x) = x

- if this is true, the answer is "Infinity"

– otherwise, it is not.

• *fⁿ* is piecewise linear

but the number of pieces may grow exponentially

 number of solutions to fⁿ(x) = x in [0;m] is the number of intersections of the fⁿ plot with the diagonal of [0;m]x[0;m]

• *f*^{*n*} consists of intervals going from *y* = *a* to:

 Intersections between fⁿ and the diagonal in the interval (k; k + 1) = sub-intervals going from y = k to y = k + 1 or vice-versa.

Solution

- A_{ij} = number of subintervals
 between y = j and y = j+1
 contained in the graph of f in (i; i+1)
- (Aⁿ)_{ij} = number of subintervals
 between y = j and y = j+1
 contained in the graph of fⁿ in (i; i+1)

Use fast exponentiation

- The answer for non-integer points is Trace(Aⁿ)
- + For all x = 0, 1, ..., m check if $f^n(x) = x$

Problem B. Palindromic DNA

- Transform a given DNA string (chars: A, G, C, T)
 - several pairs of characters should be equal
 - each character can be unmodified or changed:
 - cyclic order: $A \rightarrow G \rightarrow C \rightarrow T$
 - A → G, T
 - G \rightarrow A, C
 - C \rightarrow G, T
 - T \rightarrow C, A

cannot modify consequent characters

Observation

- For each pair of positions that should be equal:
 - if s[i] = s[j], need to apply same operation to both;
 - if dist(s[i]; s[j]) = 1, exactly one of them has to change (in the right direction);
 - if dist(s[i]; s[j]) = 2, both need to change in reverse directions.

Solution: 2SAT

- Variables:
 - $-x_i s[i]$ is changed $-y_i - s[i]$ is increased in the cyclic order
- For all pairs of positions to be equal: - $s[i] = s[j] \rightarrow (x_i = x_j) \& (y_i = y_j) \rightarrow$ $(!x_i \mid x_j) \& (!x_j \mid x_i) \& (!y_i \mid y_j) \& (!y_j \mid y_i)$
- No two consecutive positions are changed:
 (!x₁ | !x₂) & (!x₂ | !x₃) & ...
- Dependencies of y_i on x_i : - $(x_1 | !y_1) \& (x_2 | !y_2) \& ...$

Problem C. Jumping Monkey

- There is a graph and a monkey in an unknown vertex
- You shoot in a vertex
 - the monkey is killed, or
 - the monkey moves using a graph edge
- What is the shortest sequences of shoots to kill the monkey for sure?

Solution

• Store the vertex set where the monkey can be

- recalculation: O(N) shoots, $O(N^2)$ moves for each shoot, $O(2^N N^3)$ in total

- Bitmasks for possible moves $O(2^N N^2)$ in total
- For current state {V₁, V₂, ..., V_k}, compute the neighbors of the sets {V₁}, {V₁, V₂}, ... and the sets {V_k}, {V_k, V_{k-1}}, ... Use it for everything else O(N) operations for a state, O(2^N N) in total

Problem D. 3-sided Dice

- There are three dice A, B, C with the given probabilities for sides 1, 2, 3
- Is it possible to simulate the given die using the dice A, B and C?

- by choosing fixed **nonzero** probability for each die

Solution

• Dice are points in 2D

– coordinates the probabilities for sides 1 and 2

- Dice A, B, C \rightarrow a triangle
 - the triangle is degenerate (a segment) \rightarrow test if the given die is strictly inside the segment
 - − the triangle is not degenerate →
 test if the given die is strictly inside the triangle

Problem E. Assembly Line

- Given a list of pieces of different types
- Assembly table
 - given two pieces of type T_i and T_j
 - it takes C_{ii} time to assemble them
 - the resulting piece is of type R_{ij}
- What is the optimum time to assemble all the pieces?
 - cannot change their order

Solution

- Dynamic programming
 - $-D_{iik} = 0$ if the type of *i*-th piece is k
 - $-D_{iik} = \infty$ if the type of *i*-th piece is not k
 - $-D_{ijk} = \min \{D_{ima} + D_{mjb} + C_{ab} \mid R_{ab} = k, i \le m < j\}$

Problem F. Alphabet Soup

- There are *P* points on a circle, each may have *S* possible types
- Compute the number of assignments of types to points, if two assignments which can be rotated one into another are equal

- modulo 10000007

Solution: Burnside lemma

- Compute the smallest rotation that move all points onto some other points
 - string of angle differences D: D[i] = P[i+1] P[i]
 - find an entity of *D* into *DD* which is not a prefix or a suffix
- Full circle rotation $\rightarrow S^P \mod 10000007$

• Rotation by
$$k \rightarrow \frac{k}{P} \sum_{i=0}^{\frac{P}{k}-1} S^{k \operatorname{gcd}(i,\frac{P}{k})}$$

Problem G. Game, Set and Match

 Compute the probability of winning a game, a set and a match in tennis if each point is won with the probability of P

Rule simplification

- The simple form of rules
 - To win a game, you need to win 4 points by a margin of 2.
 - To win a set, you need to win 6 games
 by a margin of 2, except if the score reaches 6–6 (tiebreak).
 - To win the tiebreak, you need to win 7 points by a margin of 2.
 - To win the match, you need to win 2 sets.

Subproblems

- a(p) the probability of being the first to win two consecutive points when tied, and each point is won with the probability of p
- b(n, p₁, p₂) the probability of winning n points with a margin of two if each point is won with the probability of p₁ and when the score is n–n, the probability of winning is p₂.

Winning probabilities

- Pr[game] = b(4, p, a(p))
- Pr[tiebreak] = b(7, p, a(p))
- Pr[set] = b(6, Pr[game], Pr[tiebreak])
- $Pr[match] = r^2 + 2r(1 r)$ where r = Pr[set]

Computing *a*(*p*)

- With the probability of p^2 we win
- With the probability of $(1-p)^2$ we lost
- With the probability of 2p(1-p) we return to the initial state

•
$$a(p) = p^2 + 2p(1-p) a(p)$$

•
$$a(p) = \frac{p^2}{1-2p(1-p)}$$

Computing $b(n, p_1, p_2)$

• f(i, j) –probability of winning with score i - j.

$$-f(i, j) = 1 \text{ if } i \ge n \text{ and } i \ge j + 2$$

$$-f(i, j) = 0 \text{ if } j \ge n \text{ and } j \ge i + 2$$

$$-f(n, n) = p_2$$

$$-f(n, n-1) = p_1 + (1 - p_1)f(n, n)$$

$$-f(n-1, n) = p_1f(n, n)$$

$$-f(i, j) = p_1f(i + 1, j) + (1 - p_1)f(i, j + 1)$$

• $b(n, p_1, p_2) = f(0, 0)$

Problem H. Non-negative Partial Sums

- Count the number of cyclic shifts of the given array such that all partial sums are nonnegative
 - -a[i] the input array
- Compute in linear time:
 - -A[i] sum of prefix of length *i*, B[i] of suffix
 - $-C[i] = \min\{j \le i\} A[j]$

 $-D[i] = \min(a[i], a[i] + a[i + 1], ...)$

• Answer: count $\{i \mid D[i] \ge 0; B[i] + C[i - 1] \ge 0\}$

Problem I. Beehives

- Problem: find a shortest cycle in the undirected graph
- Solution:
 - start a BFS from each vertex
 - stop when you find an already visited node

Problem J. RNA Secondary Structure

- Given RNA a string of {A, C, G, U} encoded in RLE
- A can pair with U
- C can pair with G
 - no more than K times
- Pairings should not overlap
- Find how to make maximum number of pairings

Solution

- Consider the first and last chains of equal symbols
 - unpairable cut most of the chains
 - pairable make pairings
- What remains?
 - inner chains of equal symbols
 - small pieces of first and last chains
- Run dynamic programming
 - A[L][R][C] number of pairings from symbol L
 to symbol R when at most C pairs C-G can be paired

Problem K. The Moon of Valencia

- Given a graph with costs on vertices and on edges
- You need to find a path starting and ending in given times at given vertices with cost equal to the given one.

Problem K. The Moon of Valencia

- SWERC judges say...
 - the problem can be solved using A* algorithm
 - the priority heuristic is $|S^* G + H|$
 - S* the required cost
 - G the current cost
 - H the distance to the target in the path graph

Thank you!

Thank you for your attention!