Day 1: Problem Analysis

Maxim Buzdalov Preliminaries

Droblem \uparrow
Problem B
Problem C
Droblem D
Problem E
Problem F
Problem G
Problem H
Problem I

Preliminaries

- Contest origin - German Collegiate Programming Contest 2010
- Original winner - U Erlangen: deFAUlt, 10/11 problems solved
- $7^{\text {th }}$ place at World Finals 2011
- thought this contest is more-or-less difficult
- Pre-solving: Scala, bytes of code / problem

A	715	E	2009	I	802
B	2154	F	3001	J	1895
C	789	G	1166	K	1711
D	1968	H	1595		

- Result: an easy contest

Problem A. Absurd Prices

Maxim Buzdalov

- Given a price
- an integer $1 \leq c \leq 10^{9}$
- Determine if it is absurd
- $c=X X \ldots X d 000 \ldots .00$
- $a=$ number of $X \mathrm{~s}$
- absurdity: $2 \cdot a-($ if $d=5$ then 0 else 1
- c is absurd <=> $[0.95 \cdot c ; 1.05 \cdot c]$ contains an integer with a smaller absurdity

Problem A. Solution

- What is the nearest integer with a smaller absurdity?
- Case 1: $c=X X \ldots X 500 \ldots 0$
- Try replacing $X 5$ with $X 0$ or $(X+1) 0$
- Case 2: $c=X X \ldots X(d \neq 5) 00 \ldots 0$
- Try replacing $X d$ with $X 0, X 5$ or $(X+1) 0$

Day 1: Problem
Analysis
Day 1: Problem
Analysis
Maxim Buzdalov

Problem A
Problem B
Problem C

Problem B. Cheating or Not

- Distribute soccer teams into groups

A	B	C	D
ITA	URU	IRE	ARG
YUG	GER	CZE	ENG
NET	BRZ	SPA	ROM

- Constraints
- first row is fixed
- some teams cannot be in the same group
- otherwise rows are random
- Each team has a strength
- Find expected sum of strengths of team T 's competitors

Problem B. Solution (1/2)

- A key insight:
- no two teams from the same "confederation" can be in the same group
- apart from the first row, all confederations fit into rows
- confederations bigger than a row are ignored
- no two rows $2 \leq i<j \leq m$ influence each other!
- Compute separately:
- probabilities for the desired team to appear in each group
- expectations of strength sums (not including the desired team's row) for each group
- the answer is the scalar product of the two

Problem B. Solution (2/2)

 AnalysisMaxim Buzdalov

- For each row:
- If it contains the desired team:
- try all row permutations
- filter prohibited ones
- compute probabilities for each group to appear in
- Otherwise:
- try all row permutations
- filter prohibited ones
- compute expected strengths
- Consider the seeded row separately:
- If it contains the desired team:
- set the corresponding probability to 1.0
- Otherwise:
- add strengths to expectations

Problem C. Counterattack

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries
Problem A
Problem B
Problem C
Problem D
Problem E
Problem F
Problem G
Problem H
Problem !
Problem J
Problem K

Problem C. Counterattack

- Given:
- source S and target T
- $2 N$ more vertices: $P_{1} \ldots P_{N}, Q_{1} \ldots Q_{N}$
- costs: $\{P, Q\}_{i} \rightarrow\{P, Q\}_{i+1}, S \rightarrow\{P, Q\}_{1}$, $\{P, Q\}_{N} \rightarrow T$
- Find the shortest path from S to T
- Solution: the graph is acyclic \rightarrow DP, $O(N)$ time

Maxim Buzdalov Preliminaries Problem A Problem B

Problem D. Field Plan

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries
nrobtem A
Problem B
Problem C
Problem D
Problem E
Problem F
Problem G
Problem H
Problem !
Problem J
Problem K

Problem D. Field Plan

Maxim Buzdalov

- Given N positions on the field and M possible moves
- Find all positions from which all other positions are reachable using possible moves
- Solution:
- Find the topologically first connected component - $O(N+M)$
- Check if all vertices are reachable from it $O(N+M)$
- If not, Confused, otherwise print the component

Problem E. Hacking

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A
Problem B

Problem C

Problem D
Problem E
Problem F
probtem G
Problem H
Problem I
Problem J
Problem K

Problem E. Hacking

 AnalysisMaxim Buzdalov

- Given:
- a string s of length $n \leq 10000$
- a maximum query length $m \leq 100$
- a limit on the alphabet to use $k \leq 26$
- Find a query which is not a substring of s
- Solution
- build a trie from all substrings of length $\leq m$
- traverse using symbols $1 \leq s \leq k$
- find a non-existing node at depth of at most m and report a path to it

Problem F. Last Minute
 Constructions

 AnalysisMaxim Buzdalov

Problem F. Solution Idea

Day 1: Problem Analysis

Maxim Buzdalov

- Add one more directed edge: from T to S
- Looks like one needs to find an Eulerian cycle
- edges \leftarrow directed edges
- vertices \leftarrow components connected by undirected edges

Problem F. Complication

 AnalysisMaxim Buzdalov

- However, not every incoming edge can be connected to every outgoing edge
- Remember, each vertex can be visited only once!

Problem F. Solution

Maxim Buzdalov

- In each connected component:
- it is a tree
- determine which incoming edges can be connected to which outgoing edges dynamic programming
- if mapping exists, it is the only one
- After connecting incoming edges to outgoing ones:
- find Eulerian cycle
- simpler: it's a loop, so just check connectivity

Problem G. Lineup

Day 1: Problem Analysis

Maxim Buzdalov

- Given:
- 11 players, 11 positions
- A(player)(position) - profit
- For each player, profit is non-zero for at most 5 positions
- Find an optimum assignment
- Solutions:
- bipartite matching
- Hungarian algorithm
- brute-force in 11^{5}
- ...

Problem H. Polynomial Estimates

Day 1: Problem Analysis

Maxim Buzdalov

- Given: x_{1}, \ldots, x_{N}
- Determine: if $x_{i}=P(i)$ for some polynomial P with degree of at most 3
- Solution:
- Complex: compute the polynomial from first 4 values, check all other values
- big integers
- or fighting with precision
- Simple:
- compute neighbor differences of the input
- compute neighbor differences of the above
- compute neighbor differences of the above
- if they are all same, it's a polynomial with degree of at most 3

Problem I. Soccer Bets

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem J. The Two-Ball Game

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B
Problem C
Problem D
Problem E
Problem F
Problem G
Problem H
Problem I
Problem J
Problem K

Problem J. Idea

Day 1: Problem
Analysis
Maxim Buzdalov

- Assume that the game is possible, but it is not possible if $S_{1} \rightarrow T_{1}$ directly
- consider convex hulls H_{A} of points above $S_{1}-T_{1}$ and H_{B} of points below
- $H_{A} \cup H_{B} \cup\left\{S_{1}, T_{1}\right\}=$ all points
- no point of H_{A} can see no point of H_{B}
- then the path from S_{1} to T_{1} should be either above S_{2} or below T_{2}
- the path from S_{1} to T_{1} can be convexified, then both S_{2} and T_{2} will be strictly inside
- then it's possible to use $S_{2} \rightarrow T_{2}$ directly!

Problem J. Solution

- If $S_{1}-T_{1}$ doesn't intersect $S_{2}-T_{2}$, then POSSIBLE
- Check if it's possible using $S_{1}-T_{1}$, then using $S_{2}-T_{2}$
- How to perform each check?
- maximum, minimum are by

$$
\left(p-S_{1}\right) \cdot\left(T_{1}-S_{1}\right)
$$

- P_{A}^{+}- maximum from points above $S_{1}-T_{1}$
- P_{A}^{-}- minimum from points above $S_{1}-T_{1}$
- P_{B}^{+}- maximum from points below $S_{1}-T_{1}$
- P_{B}^{-}- minimum from points below $S_{1}-T_{1}$
- if $P_{A}^{+}-P_{B}^{+}$doesn't intersect $S_{1}-T_{1}$, it's OK
- if $P_{A}^{-}-P_{B}^{-}$doesn't intersect $S_{1}-T_{1}$, it's OK

Problem K. To Score or Not to

 ScoreDay 1: Problem Analysis

Maxim Buzdalov

Preliminaries
nrobtent A
Problem B
Problem C
Problem D
Droblem E
Problem F
Problem C
Problem H
Problem I
Problem I
Problem K

Problem K. To Score or Not to

Score

- Given:
- robot positions (black team, white team) and the goal
- robots may intercept a ball
- a robot is 3 times slower than a ball
- each robot except for the starting one may be knocked out
- Find if it is possible to score a goal?
- Solution:
- build a "passability" graph
- try knocking out all vulnerable vertices
- check if the goal is reachable nevertheless
-

