Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

ション ふゆ ア キョン キョン ヨー もくの

Day 1: Problem Analysis

Maxim Buzdalov

ITMO University

10.03.2015

Preliminaries

- Contest origin German Collegiate
 Programming Contest 2010
- Original winner U Erlangen: deFAUlt, 10/11 problems solved
 - 7th place at World Finals 2011
 - thought this contest is more-or-less difficult
- Pre-solving: Scala, bytes of code / problem

А	715	Е	2009		802
В	2154	F	3001	J	1895
С	789	G	1166	Κ	1711
D	1968	Н	1595		

Result: an easy contest

Maxim Buzdalov

Preliminaries

- ^Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

Problem A. Absurd Prices

くしゃ 本面 そうせん ほう うめんろ

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem A. Solution

- What is the nearest integer with a smaller absurdity?
- Case 1: c = XX...X500...0
 Try replacing X5 with X0 or (X + 1)0
 Case 2: c = XX...X(d ≠ 5)00...0
 Try replacing Xd with X0, X5 or (X + 1)0

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Problem B. Cheating or Not

Distribute soccer teams into groups

А	В	С	D
ITA	URU	IRE	ARG
YUG	GER	CZE	ENG
NET	BRZ	SPA	ROM

- Constraints
 - first row is fixed
 - some teams cannot be in the same group
 - otherwise rows are random
- Each team has a strength
- Find expected sum of strengths of team
 T's competitors

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem B. Solution (1/2)

- A key insight:
 - no two teams from the same "confederation" can be in the same group
 - apart from the first row, all confederations fit into rows
 - confederations bigger than a row are ignored
 - ▶ no two rows 2 ≤ i < j ≤ m influence each other!</p>
- Compute separately:
 - probabilities for the desired team to appear in each group
 - expectations of strength sums (not including the desired team's row) for each group
 - the answer is the scalar product of the two

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem B. Solution (2/2)

- ► For each row:
 - If it contains the desired team:
 - try all row permutations
 - filter prohibited ones
 - compute probabilities for each group to appear in
 - Otherwise:
 - try all row permutations
 - filter prohibited ones
 - compute expected strengths
- Consider the seeded row separately:
 - If it contains the desired team:
 - set the corresponding probability to 1.0
 - Otherwise:
 - add strengths to expectations

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem C. Counterattack

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Problem C. Counterattack

- ► Given:
 - source S and target T
 - 2N more vertices: $P_1 \dots P_N$, $Q_1 \dots Q_N$
 - ► costs: $\{P, Q\}_i \rightarrow \{P, Q\}_{i+1}$, $S \rightarrow \{P, Q\}_1$, $\{P, Q\}_N \rightarrow T$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

- Find the shortest path from S to T
- Solution: the graph is acyclic → DP, O(N) time

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem D. Field Plan

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

(ロ)、

Problem D. Field Plan

- Given N positions on the field and M possible moves
- Find all positions from which all other positions are reachable using possible moves
- Solution:
 - ► Find the topologically first connected component O(N + M)
 - Check if all vertices are reachable from it O(N + M)

くしゃ 本面 そうせん ほう うめんろ

 If not, Confused, otherwise print the component

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem E. Hacking

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖…

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

Problem E. Hacking

- Given:
 - a string s of length $n \leq 10\,000$
 - a maximum query length $m \leq 100$
 - a limit on the alphabet to use $k \leq 26$
- Find a query which is not a substring of s
 Solution
 - build a trie from all substrings of length $\leq m$
 - traverse using symbols $1 \le s \le k$
 - find a non-existing node at depth of at most m and report a path to it

くしゃ 本面 そうせん ほう うめんろ

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

^Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem F. Last Minute Constructions

- ► Given:
 - N vertices, M undirected edges, a forest
 - T more directed edges
 - ▶ a starting vertex S and a finishing vertex T
- Find:
 - a path from S to T
 -traversing each directed edge in the correct direction
 - ... which may use undirected edges
 - ... visiting each vertex at most once
 - ... or determine it is impossible

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

^Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem F. Solution Idea

- Add one more directed edge: from T to S
- Looks like one needs to find an Eulerian cycle
 - edges \leftarrow directed edges
 - ► vertices ← components connected by undirected edges

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem E

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

くしゃ 本面 そうせん ほう うめんろ

Problem F. Complication

- However, not every incoming edge can be connected to every outgoing edge
- Remember, each vertex can be visited only once!

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

くしゃ 本面 そうせん ほう うめんろ

Problem F. Solution

- In each connected component:
 - it is a tree
 - determine which incoming edges can be connected to which outgoing edges – dynamic programming
 - if mapping exists, it is the only one
- After connecting incoming edges to outgoing ones:
 - find Eulerian cycle
 - simpler: it's a loop, so just check connectivity

くしゃ 本面 そうせん ほう うめんろ

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem G. Lineup

- Given:
 - 11 players, 11 positions
 - A(player)(position) profit
 - For each player, profit is non-zero for at most 5 positions

くしゃ 本面 そうせん ほう うめんろ

- Find an optimum assignment
- Solutions:
 - bipartite matching
 - Hungarian algorithm
 - brute-force in 11⁵
 - ▶

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

^oroblem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem H. Polynomial Estimates

- Given: x_1, \ldots, x_N
- Determine: if x_i = P(i) for some polynomial P with degree of at most 3
- Solution:
 - Complex: compute the polynomial from first 4 values, check all other values
 - big integers
 - or fighting with precision
 - Simple:
 - compute neighbor differences of the input
 - compute neighbor differences of the above
 - compute neighbor differences of the above
 - if they are all same, it's a polynomial with degree of at most 3

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem I. Soccer Bets

- Given: shuffled olympic game outcomes without draws (+ a game for 3rd place)
- Find: the winner
- Solution: find who lost no games

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ●

Problem J. The Two-Ball Game

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

- Problem D
- Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem J. Idea

- Assume that the game is possible, but it is not possible if $S_1 \rightarrow T_1$ directly
 - ► consider convex hulls H_A of points above S₁-T₁ and H_B of points below
 - $H_A \cup H_B \cup \{S_1, T_1\} = \text{all points}$
 - no point of H_A can see no point of H_B
 - ► then the path from S₁ to T₁ should be either above S₂ or below T₂
 - ► the path from S₁ to T₁ can be convexified, then both S₂ and T₂ will be strictly inside
 - then it's possible to use $S_2 \rightarrow T_2$ directly!

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem J. Solution

- If $S_1 T_1$ doesn't intersect $S_2 T_2$, then POSSIBLE
- ► Check if it's possible using S₁-T₁, then using S₂-T₂
- How to perform each check?
 - maximum, minimum are by $(p S_1) \cdot (T_1 S_1)$
 - P_A^+ maximum from points above $S_1 T_1$
 - P_A^- minimum from points above $S_1 T_1$
 - P_B^+ maximum from points below $S_1 T_1$
 - P_B^- minimum from points below $S_1 T_1$
 - if $P_A^+ P_B^+$ doesn't intersect $S_1 T_1$, it's OK
 - if $P_A^- P_B^-$ doesn't intersect $S_1 T_1$, it's OK

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K. To Score or Not to Score

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem K. To Score or Not to Score

- ► Given:
 - robot positions (black team, white team) and the goal
 - robots may intercept a ball
 - a robot is 3 times slower than a ball
 - each robot except for the starting one may be knocked out
- Find if it is possible to score a goal?
- Solution:
 - build a "passability" graph
 - try knocking out all vulnerable vertices
 - check if the goal is reachable nevertheless

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J