Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem A. Analogous Sets

Input file: analogous.in
Output file: analogous.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

For a set A of positive integers let us call A+ A a multiset {z + y|x,y € A,z # y}.

Consider two sets A and B of the same size n containing positive integers. A and B are called analogous
it A+ A and B + B are the same multisets. For example, {1,4} and {2,3} are analogous, because
A+ A= B+ B = {5}, but {1,2,5,6} and {1,3,4,6} are not, because A+ A = {3,6,7,7,8,11} and
B+ B=1{4,5,7,7,9,10}.

Given n you have to find two analogous sets of size n or detect that there are none.

Input
The input file contains multiple test cases, one on a line.

Each test case is an integer n on a line by itself (2 < n < 1000).

The last test case is followed by a zero that should not be processed.

Output

For each test case print “Yes” if there exist two different analogous sets of size n, or “No” if there are
none. If there exist such sets, the following two lines must contain n positive integers each and describe
the found sets.

If there are several possible pairs of analogous sets for some n, you can output any one.

Example
analogous.in analogous.out
2 Yes
3 14
0 23
No

Page 1 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem B. Bayes' Law

Input file: bayes.in
Output file: bayes.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Bayes’ Law is one of the central theorems of elementary probability theory. It allows to update probability
estimations based on experiments. Consider random events A and B. Let A be a positive outcome of an
experiment and B be a hypothesis. The probability P(A|B) is the probability that A is observed if B is
true. We have P(A|B) = P(ANB)/P(B). If we observe A indeed, we can estimate the probability of B as
P(B|A) = P(A|B)-P(B)/P(A). In this problem you are given an experiment and the required confidence
a, and you must find the best hypothesis B, such that P(B|A) > «a. Let us get into more details now.

Consider a real-valued random variable ¢ distributed uniformly between 0 and x. The experiment consists
of evaluation of a given function f on the value of £. The result of the experiment is considered positive if
a < f(&§) <b. Given f as a piecewise-linear continuous function, a, b, and «, you must find such segment
[L, R] that 0 < L < R < z, the probability P(L < ¢ < R|a < f(§) <b) is at least a, and segment length
R — L is minimal possible.

Input

The input file contains multiple test cases.

Each test case starts with an integer n — the number of segments in the description of f (1 < n < 100000).
The following line contains two real numbers: a and b (0 < a < b < 103). The following line contains real
number « (0 < o < 1). Each number is given with at most 3 digits after decimal point, b — a > 1073,

After that n+ 1 lines follow, they describe the break points of f’s graph. These lines contain two integers
each: coordinates of points (zg,%0), (Z1,¥1)s -+, (Tn,Yn), 0 =29 < 21 < ... < 2y =2 < 105, 0 < gy < 103
The graph of the function f consists of segments (xg, yo) — (21, 1), (x1,91) — (2,y2), etc. It is guaranteed
that P(a < f(€) < b) is at least 1073.

The last test case is followed by a zero that should not be processed. The sum of n in all test cases in one

input file is at most 100 000.

Output

For each test case two real numbers: L and R. Your answer may have absolute or relative error of at
most 1075 in both P(L < ¢ < Rla < f(£) < b) > « condition and R — L minimization. Tests are
designed in such way that there are no segments [L, R'] such that R’ — L' < (R — L)(1 — 107%) but
P(L'<E<R|a< f(§)<b)>a—1075

If there are several possible solutions, output any one.

Examples
bayes.in bayes.out
6 1.0 13.813333333333333
3.0 5.0
0.9
02
25
50
72
81
13 6
15 0
0

Page 2 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem C. Catalian Sequences

Input file: catalian.in
Output file: catalian.out
Time limit: 4 seconds
Memory limit: 512 mebibytes
Consider a sequence (aj,as,...,a,) of non-negative integers. Accent in a sequence is a pair of adjacent

elements such that the element with greater index has greater value. For example, there are two accents
in sequence (0,2,3,1,0): a; = 0 to ag = 2 and ay = 2 to az = 3. Let us denote the number of accents
among the first k& elements of the sequence as Ag. In the given example A1 =0 Ay =1, A3 =2, 44, =2
and A5 = 2.

A sequence is called accented if a; = 0 and for each i the inequality a; < A;_1+1 is satisfied. For example,
the sequence (0,2, 3,1,0) is not accented because as = 2 and A; = 0. The sequence (0, 1,0, 2, 3) is in turn
accented because A =0, Ay =1, A3 =1, A4 =2.

A sequence (aj,as,...,a,) of non-negative integers is called catalian if the following conditions are
satisfied:
1. (ay,aq9,...,a,) is accented,;

2. there are no 7, j and k such that 1 <i <j <k <nand a, < a; < a;.

For example, the sequence (0, 1,0, 2, 3) is catalian, as well as the sequence (0, 1,0, 2,1) is, but the sequence
(0,1,0,2,0) is not catalian because for i =2,j =4,k =5 we have a;, =0 < a; =1 < a; = 2.

Given n find the number of catalian sequences of length n. For example, if n = 3 there are 5 such
sequences: (0,0,0), (0,0,1), (0,1,0), (0,1,1), (0,1,2).

Input

The input file contains multiple test cases, one on a line.

Each test case is an integer n on a line by itself (1 < n < 32).

The last test case is followed by a zero that should not be processed.

Output

For each test case output one line containing the case number and the number of catalian sequences of
length n. Adhere to the format of sample output.

Examples
catalian.in catalian.out
1 Case #1: 1
2 Case #2: 2
3 Case #3: b5
4 Case #4: 14
5 Case #5: 42
0

Page 3 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem D. Drunkard’s Walk

Input file: drunkard.in
Output file: drunkard.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Once Denis heard the following legend.

A drunkard is walking randomly in o directed graph G with n vertices numbered from 1 to n. Each vertex
except vertices n—1 and n has exactly two outgoing edges. The drunkard starts at vertex 1. Each second he
chooses randomly uniformly one of the two outgoing edges and walks along it. He finishes his walk either
i his home at vertex n — 1, or in the bar at verter n. The probability that the drunkard ends his walk at
home is exactly p/q.

Now Denis wonders, what the graph G could be.
Help him, find such graph G that the story above is true.

Input

The input file contains multiple test cases, one on a line.

Each line of the input file contains two integers: p and ¢ (1 < p < ¢ < 100).
The last test case is followed by two zeroes that should not be processed.

There are at most 200 test cases in one input file.

Output

For each test case output the description of the graph G. The first line must contain n — the number of
vertices. The number of vertices must be at most 1000. Each of the following n — 2 lines must describe
edges going out from the corresponding vertex. The i-th of these lines must contain two integers: u; and
v; — the numbers of vertices where the edges from the i-th vertex go to. The graph can have multiple
edges from one vertex to another if needed. The edge can go from a vertex to itself if needed.

Examples

drunkard.in drunkard.out

o
o w
w N
=D

The graph in the example is shown on the picture below.

D O———=® ®

bar start home

Page 4 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem E. Elegant Scheduling

Input file: elegant.in
Output file: elegant.out
Time limit: 5 seconds
Memory limit: 512 mebibytes

Eddy is developing schedule for his new project. There are n = 2 jobs to be completed, numbered from
0 to n — 1. Completing a job takes one day, Eddy’s worker Eve will use the following 2* days to complete
the jobs. They have agreed on the following payment scheme: if the job j is completed next day after
job ¢, Eddy must pay d; ; dollars to Eve.

Eddy would like to order jobs in a way to pay Eve as few as possible. But he knows that the problem
of finding the best possible ordering is NP-complete, so he decides to choose the best elegant ordering.
Elegant ordering is composed using the following algorithm. Initially all jobs are ordered by their numbers:
0,1,2,...,n — 1. In one step the algorithm divides the sequence of jobs ag,ay,...,aq _q to its first half
G0,01,...a9-1_1 and its second half agi-1,...a9_;. Eddy may choose to complete halves in this order,
or swap them. After that, if ¢ > 1, the same algorithm is applied to each of the halves.

For example, ordering 1,0,2,3,7,6,5,4 is elegant, because it can be obtained from the initial ordering
0,1,2,3,4,5,6,7 by the following sequence of steps (the considered part of the sequence is in brackets):
[0,1,2,3,4,5,6,7]: do not swap halves

[0,1,2,3],4,5,6,7: do not swap halves

[0,1],2,3,4,5,6,7: swap halves to get 1,0,2,3,4,5,6,7

1,0,[2,3],4,5,6,7: do not swap halves

1,0,2,3,[4,5,6,7]: swap halves to get 1,0,2,3,6,7,4,5

1,0,2,3,[6,7],4,5: swap halves to get 1,0,2,3,7,6,4,5

1,0,2,3,7,6,[4,5]: swap halves to get 1,0,2,3,7,6,5,4

However, the ordering 1,2,0,3,7,6,5,4 is not elegant since it cannot be obtained from the initial ordering
by these rules.

Given n and a way to generate d; ; find the minimal possible sum Eddy can pay to Eve and the order the
jobs must be completed.

Input

The input file contains multiple test cases.

The first line of each test case contains an integer n (2 < n < 4096, n is power of 2). The following line
contains a, b, c and m (0 < a,b,c < 10°, 2 < m < 10°). You can calculate values of d; ;j for 7 and j from 0
to n — 1 using the following formula: d; ; = (ai + bj + c(i @ j)) mod m where x @ y is bitwise exclusive or
of z and y (for example, 13 @ 7 = 11013 & 01115 = 10109 = 10).

The last test case is followed by a zero that should not be processed. The sum of n in all test cases doesn’t
exceed 4096.

Output

For each test case print two lines. The first line must contain the minimal total sum Eddy can pay to
Eve. The second line must contain the order the jobs should be completed. If there are several solutions,
output any one.

Examples
elegant.in elegant.out
8 27
6 57 10 54761023
0

Page 5 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem F. Flights

Input file: flights.in
Output file: flights.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Farcian Federation is a big country and its n cities are located at great distance from each other. Therefore
the main way to move between cities there is making a flight by a plane. There are m bidirectional flights
connecting different cities. For each city there is a flight connecting it with Cowmos, the capital of Farcian
Federation, and there can be some other flights.

The new minister of transportation of Farcian Federation is planning to make several reforms to the
Farcian aviation to counter terrorism. The first reform he is planning is changing flight numbers.

After the reform each flight must have a number from 1 to m. Different flights must have different numbers.
For any two different cities v and v the sum of numbers of flights connecting u to other cities must be
different from the sum of numbers of flights connecting v to other cities.

Help the minister to choose new numbers for the flights so that the condition above was satisfied.

Input

The input file contains multiple test cases.

The first line of each test case contains n and m — the number of cities and the number of flights,
respectively (3 <n <1000, n —1 < m < 100000). Let the cities of the country be numbered from 1 to n
and let the capital have number 1. The following m lines describe flights. Each flight is described by two
integers u; and v; — the numbers of the cities it connects. No two cities are connected by more than one
flight. No city is connected by a flight to itself. Each city is connected by a flight to city 1.

The last test case is followed by two zeroes that should not be processed.
The sum of n in all test cases in one file doesn’t exceed 100000. The sum of m in all test cases in one file

doesn’t exceed 100 000.

Output

Print answers to all test cases.

If it is possible to give numbers to flights so that the described condition is satisfied, output “Yes” as the
first line of output. In the other case output “No”.

If the numbering is possible, the following line must contain m integers: for each flight in order they are
given in the input file print its new number. If there are several solutions, output any one.

Examples

flights.in flights.out
Yes
13245678

Q U D WNNEFE, P, P, P, O
O N O WN D WO

In the example the sums of flight numbers in the cities are 10, 17, 14, 15, and 16, respectively.

Page 6 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem G. Genome of English Literature

Input file: genome.in
Output file: genome.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Genome assembly is an important problem in bioinformatics. Genome is a very long string, so reading it
completely from DNA is a difficult task. To extract genome information so called sequencing machines
are used. They take DNA and split it to small pieces. After that these pieces are scanned to get so called
pair reads — prefix and suffix of each piece of some length k are recorded. Some characters in reads can
be scanned incorrectly, they correspond to read errors. Usually several copies of the same genome are
sequenced, thus providing multiple cover of the genome. Genome assembly problem is then to restore
genome from these reads.

In this problem we would attempt to develop genome assembly algorithms and apply them to classic
English literature. We will ignore pairness of reads and will not introduce any errors, so your problem will
be simpler than that of bioinformatic scientists.

Judges took 12 classic English and American literature texts as test data:

e William Shakespear — “Romeo and Juliet” (sample test)
e Daniel Defoe — “Robinson Crusoe”

e Jonathan Swift — “Gulliver’s Travels”

e Jack London — “White Fang”

e The Works Of Edgar Allen Poe

o Matthew Lewis — “The Monk”

e Arthur Conan Doyle — “The Hound of the Baskervilles”
e Charles Dickens — “Great Expectations”

o H.G. Wells — “The War of the Worlds”

o Herman Melville — “Moby Dick or The Whale”

e Mark Twain — “The Adventures of Tom Sawyer”

e Horace Walpole — “The Castle of Otranto”

Each of these texts was downloaded from Project Guttenberg library as plain text. First it was converted
to a sequence of characters with ASCII codes from 32 to 126. All characters with ASCII code less then
32 (space) were replaced with space and all characters with ASCII code greater than 126 were removed.
All sequences of two or more consecutive spaces were replaced with one space. All characters except the
first 50000 were removed. Let us call the resulting string .

After that 20000 times random integer ¢ from 1 to 49951 was uniformly generated and 50 characters at
positions t[i ... + 49] were printed to the input file as one line. Therefore input file contains 20 000 lines
of 50 characters each, they represent some random subwords of length 50 of .

Your task is to cover a great part of ¢ with scaffolds. For the purpose of this problem scaffold is a string of
length at least 500 that is a substring of ¢. You have to print one or more words to the output file with the
total length of at most 50 000. Words that are not substrings of ¢ will be ignored. For words that are long
enough substrings of ¢ all occurrences will be found. Positions in ¢ that are covered by these occurrences
will be marked. Your output for a test will be accepted if at least half of positions of ¢ are marked.

Page 7 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Input

The input file contains 20 000 strings of length 50. Each string is a random substring of a text ¢ of length
50000 obtained as described in the problem statement.

Output

Output one or more words that you think are substrings of ¢ of length at least 500. Words must have
total length of at most 50 000.

Your output will be accepted if at least half of positions in ¢ are covered by occurrences of words you

print.

Examples

You can download sample input/output from http://neerc.ifmo.ru/trains/itmo-peking/genome

Page 8 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem H. Hide-and-Seek

Input file: hide.in
Output file: hide.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Little Henry likes to play hide-and-seek with his friends. But Henry doesn’t like conventional rules of the
game, so he has invented his own rules.

The boys play in Henry’s room which has a form of a simple polygon with n corners numbered from 1
to n in counterclockwise order. Let us say that the point A of the room is visible from the point B if the
segment AB is completely inside the room (it is allowed to touch room walls or corners).

The room has such form that the following conditions are satisfied:

e the first corner is convez: that is, the angle between the two walls adjacent to the first corner is less
than 180° when measured inside the room,;

e all other corners of the room are visible from the first corner.

Henry stands in the first corner of the room and his friends then choose other corners of the room in such
way that none of them can see each other and hide there. After that friends try to guess who have chosen
which corner, and seeing them all Henry has fun.

The picture below shows the room from the first example with Henry and three friends playing.

<«— Friends

/

Henry

Henry would like to play this funny game with as many friends as possible. Help him to find out how
many friends he can invite to play so that they could choose corners to hide in.

Input

The input file contains multiple test cases.

The first line of each test case contains n — the number of corners of Henry’s room (3 < n < 500).
The following n lines contain coordinates of room corners, described in counterclockwise order. Each line
contains two integers x; and y; (—10% < x;,9; < 10°).

The last test case is followed by a zero that should not be processed.

The sum of n in all test cases in one file doesn’t exceed 500.

Output

Print answers to all test cases.

For each test case first print k¥ — the maximal number of friends Henry can invite. After that print k
integers: numbers of corners the friends can choose to hide. The corners must not be visible from each
other. Corners are numbered from 1 to n in order they are given in the input file. Corner 1 must not be
chosen because Henry is there.

If there are several solutions, print any one.

Page 9 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Examples

hide.in hide.out

N, W w
[$)]
[e0]

P W WP, OO

QOO FRr P O PO EFRLREFEPNWWNDOOO
= = O O

Page 10 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem I. Informatics Final Projects

Input file: informatics.in
Output file: informatics.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Ivan is the head of Informatics Department in Innopolice Institute for Investigations and Innovation. Now
it’s time for the students of the department to select their final project, and Ivan is going to distribute
projects among students.

There are n students in the department, m available projects and t teachers going to supervise the projects.
Each student has chosen one or several projects that he would agree to work on and ordered them in a
list by his preference. The first project in the list is the project students would to work on most of all,
the second project is a bit worse, but still acceptable, and so on. Projects not on the student’s list should
not be assigned to him. Each project is on the list of at least one student.

Each teacher has chosen one or more projects he is ready to supervise. Each project was chosen by exactly
one teacher. There are also capacity limitations: at most p; students are allowed to work on the i-th project
and the j-th teacher is able to supervise at most ¢; students. After choosing projects each teacher ordered
all students that agree to take at least one of the projects he would supervise in a list by his preference.
The most preferred student is the first one on the list, and so on.

Now Ivan has a hard problem of choosing projects assignment for students. He calls an assignment of
students to projects good if the following conditions are satisfied:

e Each student is assigned to a project on his preference list, or assigned to no project.

e For each ¢ the i-th project is assigned to at most p; students.

e For each j the j-th teacher has at most ¢; students assigned to projects he supervises.

e There is no pair student s — project x, such that s is not assigned to x and if we assign s to x, it

would make the assignment better.

We say that assigning student s to project x makes assignment A better if the following conditions are
satisfied:

e Student s is not assigned to any project in A, or is assigned to a project that goes after x in his
preference list.

e The project = has less then p, students assigned to it, or the teacher that supervises x has s on his
preference list before at least one of the students that are assigned to z in A.

e The teacher v who supervises the project « has less then ¢, students assigned to all his projects,
or he has s on his preference list before at least one of the students that are assigned to one of his
projects in A.

To start with Ivan would like to find any good assignment of students to projects. Help him to find it.

Input

The input file contains multiple test cases.
Each test case starts with three integers n, m and ¢ (1 <n <100, 1 <t <m < 100).

The following n lines describe students. The i-th of these lines starts with k; — the number of projects in
the i-th student’s preference list, followed by k; distinct integers from 1 to m — the list itself, from the
most preferrable project to the least preferrable but still acceptable.

Page 11 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

The line with project capacities p1, pa, ..., pm follows (1 < p; < n).

After that t teacher descriptions follow. Each teacher description consists of three lines. The first of
these lines contains one integer ¢; — the maximal number of students the teacher accepts to supervise
(1 < t; < n). The second line contains /; — the number of students on the teacher’s preference list
followed by the list itself — [; distinct integers from 1 to n, from the most preferrable student to the
least preferrable. The third line starts with z; — the number of projects the teacher is going to supervise
followed by the list of these projects (1 < z; < m).

Each project is supervised by exactly one teacher. Each teacher lists exactly those students in his preference
list that accept to take at least one of his projects.

The last test case is followed by three zeroes that should not be processed.

The total number of students in all test cases in one input file doesn’t exceed 1000. The total number of
projects in all test cases in one input file doesn’t exceed 1000. The total number of teachers in all test
cases in one input file doesn’t exceed 1000.

Output

Print answers to all test cases.

For each test case print one line with n integers: any good assignment of projects to students. For each
student print the number of the project it must be assigned to, or 0 if the student should not be assigned
to any project.

If there are several solutions, print any one. It can be proven that at least one good assignment always
exists.

Examples

informatics.in informatics.out
1542003

w
S

56

= OO NP, NNDRER PO
=N N W
S

= W w N

= 00 P W
(9]
[e)]

1111

256

i
w =
w

O N NNWODNWNNWDNDWO P W NDN

Page 12 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem J. Japanese Origami

Input file: japanese.in
Output file: japanese.out
Time limit: 2 seconds
Memory limit: 512 mebibytes

Jeremy visits Japanese Origami club after school. His study of origami art has just started, so the first
task given by his teacher is to fold the strip with creases so that all folds were along the creases and
matched their types.

Consider a paper strip. There are two ways to fold it which creates two possible types of crease. The
picture on the left shows mountain crease which is created when the segment of the strip on the right is
placed under the segment on the left. The picture on the right shows valley crease which is created when
the segment of the strip on the right is placed above the segment on the left.

Mountain crease Valley crease
N Y

The paper strip was folded several times to create some creases. Each fold could use some of the layers,
not necessarily all or only one. Segments of the strip could be bent or curved during folds, but the paper
was not torn and after all folds it was compeletely flat, folded at all creases and only there.

You are given the description of the strip after complete folding and then unfolding: the sequence of
segment lengths between creases and crease types. You must detect whether it was possible to fold the
strip in such a way and if it was possible how the folded strip could possibly look. You must assume that
the strip is infinitely thin and creases are infinitely small.

Input

The input file contains multiple test cases.

The first line of each test case contains n — the number of creases on the paper strip (1 < n < 500).
The following line contains 2n + 1 tokens: ly, c1,11,¢2,13, . .., Cn,l,. Here I; are integers, 1 < I; < 10°, [
is distance from the strip endpoint to the first crease, l; is the distance between the first and the second
crease, etc, ¢; describe corresponding crease types and are either ‘M’ or ‘V’ for mountain and valley-type
creases, respectively. Creases are described from left to right.

The sum of n in all test cases in one file doesn’t exceed 5 000.

Output

Print answers to all test cases.

The first line of the answer must be either “Yes” if it is possible to fold the strip so that all creases were
correct, or “No” if it is impossible.

If it is possible to fold the strip, the following line must contain n+ 1 numbers and describe layer structure
of the folded strip. You must assign distinct integers from 1 to n + 1 to all segments of the strip from the
input so that the following condition was satisfied. Let us position the folded strip along the line so that
the first desribed segment (with length ly) extends to the right from the endpoint of the strip. For each
two segments X and Y if at some point there are both segments X and Y, and X is is above Y, then X
must be assigned smaller number than Y.

If there are several solutions, print any one.

Page 13 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Examples

japanese.in

3 M4M3

4 M3 M4

4 M3V4

11
TM4M3V4V4M4EeVEVEAMTVTVTMS

japanese.out

Yes

231

No

Yes

123

Yes
3654891211101 27

Notes

The picture below shows how the strip from the first example can be folded. The top picture shows the
strip with creases, the bottom picture shows the folded strip right before it is made completely flat.

N N

_—

The strip from the second example cannot be folded flat to create such creases.

N N

The picture below shows how the strip from the third example can be folded. The top picture shows the
strip with creases, the bottom picture shows the folded strip right before it is made completely flat.

A

Finally, the picture below shows schematically one way to fold the strip from the fourth example (there
are also many other ways). To make clear view it shows some distance between layers, actually layers are
infinitely thin and there is no distance between them. Creases are also shown as having some non-zero
size, actually they are infinitly small.

Page 14 of 15

Petrozavodsk Winter Training Camp 2014, Andrew Stankevich Contest 45
Beijing University training camp, April 21, 2016

Problem K. Kabbalah for Two

Input file: kabbalah.in
Output file: kabbalah.out
Time limit: 3 seconds
Memory limit: 512 mebibytes

Kai and Kevin are kabbalists. However, they don’t like traditional kabbalah with its pentagrams, etc.
They have developed their own version of kabbalah that has its rituals centered around circles.

Now they are preparing a place for their kabbalistic rituals. They are going to have rituals at the backyard
of Kevin’s grandmother’s house. The backyard has a form of a convex polygon with n vertices. Friends
need to place two circular mats to the yard for their rituals. The mats must fit completely into the yard
without overlapping. Of course none of the friends would agree to have a smaller mat, so their radii must
be equal to each other.

To have as powerful rituals as possible, Kai and Kevin would like to have as big mats as possible. Help

them to find out what maximal radius of the mats could be.

Input
The input file contains multiple test cases.

The first line of each test case contains n — the number of vertices of the backyard polygon (3 < n < 200).

The following n lines describe vertices of the polygon in counterclockwise order, each vertex is described
by its integer coordinates x; and y; (—10* < x;,9; < 10*). The given polygon is convex, no three vertices
are on the same line.

The sum of n in all test cases in one file doesn’t exceed 200.

Output

For each test case first output one floating point number — the maximal possible radius of two non-
overlapping circular mats of the same size that can be put to the backyard. The following two lines must
contain two floating point numbers each — coordinates of centers of mats.

Your answer must have absolute or relative error of at most 1076.

If there are several optimal solutions, output any one.

Examples

kabbalah.in kabbalah.out Notes
4 2.9289321881345248

00 2.9289321881345248 2.9289321881345248

10 0 7.0710678118654752 7.0710678118654752

10 10

0 10

0

Page 15 of 15

