
BAPC 2016
The 2016 Benelux Algorithm Programming Contest

Problems
A Airport Logistics
B Battle Simulation
C Brexit
D Bridge Automation
E Charles in Charge
F Endless Turning
G Manhattan Positioning System
H Multiplying Digits
I Older Brother
J Programming Tutors
K Safe Racing
L Sticky Situation

Copyright c© 2016 by the BAPC 2016 Jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Problem A: Airport Logistics 3

A Airport Logistics

A

B

Figure 1: Fastest route for first example
input.

Many airports have moving conveyor belts in the corri-
dors between halls and terminals. Instead of walking on
the floor, passengers can choose to stand on a conveyor
or, even better, walk on a conveyor to get to the end of
the corridor much faster.

The brand new Delft City Airport uses a similar sys-
tem. However, in line with the latest fashion in airport
architecture, there are no corridors: the entire airport
is one big hall with a bunch of conveyor lines laid out
on the floor arbitrarily.

To get from a certain point A to a certain point B, a
passenger can use any combination of walking on the
floor and walking on conveyors. Passengers can hop
on or off a conveyor at any point along the conveyor.
It is also possible to cross a conveyor without actually
standing on it.

Walking on the floor goes at a speed of 1 meter/second.
Walking forward on a conveyor goes at a total speed of
2 meter/second.
Walking in reverse direction on a conveyor is useless
and illegal, but you may walk on the floor immediately
next to the conveyor. (Conveyors are infinitely thin.)

How fast can you get from A to B?

Input

The first line contains four floating point numbers, XA, YA, XB, and YB. They describe the
coordinates of your initial location A = (XA, YA) and your final location B = (XB, YB).

The second line contains an integer N , the number of conveyors in the hall (0 ≤ N ≤ 100).
The following N lines each contain four floating point numbers, X1, Y1, X2, and Y2, describing
a conveyor which starts at the point (X1, Y1) and ends at the point (X2, Y2), running in a
straight line from start to end.

All coordinates are floating point numbers in the range (0 ≤ X, Y ≤ 1000.0), expressed in
units of meters.

Conveyors are at least 1 meter long. Conveyors do not intersect or touch.
Your start and destination are not on any conveyor.

4 Problem A: Airport Logistics

Output

Write one line with a floating point number, the minimum time (in seconds) needed to get
from A to B in seconds.

Your answer may have an absolute error of at most 10−4.

Sample Input 1 Sample Output 1
60.0 0.0 50.0 170.0 168.791651

3

40.0 0.0 0.0 0.0

5.0 20.0 5.0 170.0

95.0 0.0 95.0 80.0

Sample Input 2 Sample Output 2
60.0 0.0 50.0 170.0 163.527474

3

40.0 0.0 0.0 0.0

5.0 20.0 5.0 170.0

95.0 0.0 95.0 100.0

Sample Input 3 Sample Output 3
0.0 1.0 4.0 1.0 3.732051

1

0.0 0.0 4.0 0.0

Sample Input 4 Sample Output 4
0.0 1.0 10.0 1.0 10.000000

2

1.0 0.0 2.0 3.0

6.0 1.0 4.0 1.0

Problem B: Battle Simulation 5

B Battle Simulation

Picture by Bandai Namco via Wikimedia Commons

A terrible monster is rampaging through
Neo Tokyo 5! The Earth Defense Force
(EDF) has sent a mech unit1 to defeat the
monster. Because there is only a single
mech unit available after previous monster
rampages, the EDF has decided to simu-
late the upcoming battle between the mech
and the monster before launching an as-
sault. The EDF noted that the monster’s
attack pattern can be simulated by a series of moves that it performs in succession. When
denoting each of its moves with a single letter, the attack pattern can be simulated as a single
string, which should be read from left to right. The monster has the following moves:

• Rake, denoted by the letter ‘R’;

• Bite, denoted by the letter ‘B’;

• Laser breath, denoted by the letter ‘L’.

In order to defeat the monster, the mech must perform a counter move per move that the
monster makes:

• Slice, denoted by the letter ‘S’, counters the monster’s rake;

• Kick, denoted by the letter ‘K’, counters the monster’s bite;

• Shield, denoted by the letter ‘H’, counters the monster’s laser breath;

However, there is one catch. When the monster performs a subsequent combination of the
three moves Rake, Bite and Laser breath, in any order, it becomes a very powerful attack
for which the mech must perform a single counter move called Combo breaker, denoted by
the letter ‘C’. A single Combo breaker absorbs the entire combination of three moves. Any
following moves from the monster will have to be countered separately or as part of a new
combination. A move of the monster can never be part of more than one combination.

Through extensive analysis of the monster’s past behaviour, the EDF is now able to reliably
predict the actions of the monster ahead of time. You are given a string representing the
moves that the monster will use when battling the mech. The EDF needs you to write a
program that outputs the sequence of moves that the mech must perform in order to defeat
the monster.

Input

A single line containing a string of at least 1 and at most 1 000 000 characters, consisting of
the letters ‘R’, ‘B’ and ‘L’.

1huge bipedal robot, piloted by Japanese teenagers.

https://commons.wikimedia.org/wiki/File:Godzilla_-_PS4-PS3_-_Ultimate_mayhem_(E3_Trailer)_-_Kiryu_v_Goji.png
https://commons.wikimedia.org/wiki/File:Godzilla_-_PS4-PS3_-_Ultimate_mayhem_(E3_Trailer)_-_Kiryu_v_Goji.png

6 Problem B: Battle Simulation

Output

Output a single string consisting of the letters denoting the moves that are to be made in
succession by the mech in order to defeat the monster.

Sample Input 1 Sample Output 1
RRBBBLLR SSKKKHHS

Sample Input 2 Sample Output 2
RBLLLBRR CHCS

Sample Input 3 Sample Output 3
RBLBR CKS

Problem C: Brexit 7

C Brexit

A long time ago in a galaxy far, far away, there was a large interstellar trading union, consisting
of many countries from all across the galaxy. Recently, one of the countries decided to leave
the union. As a result, other countries are thinking about leaving too, as their participation
in the union is no longer beneficial when their main trading partners are gone.

P
icture

by
N

A
SA

You are a concerned citizen of country X, and you want to find out whether your country will
remain in the union or not. You have crafted a list of all pairs of countries that are trading
partners of one another. If at least half of the trading partners of any given country Y leave
the union, country Y will soon follow. Given this information, you now intend to determine
whether your home country will leave the union.

Input

The input starts with one line containing four space separated integers C, P , X, and L. These
denote the total number of countries (2 ≤ C ≤ 200 000), the number of trading partnerships
(1 ≤ P ≤ 300 000), the number of your home country (1 ≤ X ≤ C) and finally the number
of the first country to leave, setting in motion a chain reaction with potentially disastrous
consequences (1 ≤ L ≤ C).

This is followed by P lines, each containing two space separated integers Ai and Bi satisfying
1 ≤ Ai < Bi ≤ C. Such a line denotes a trade partnership between countries Ai and Bi. No
pair of countries is listed more than once.

Initially, every country has at least one trading partner in the union.

Output

For each test case, output one line containing either “leave” or “stay”, denoting whether
you home country leaves or stays in the union.

https://commons.wikimedia.org/wiki/File:Europe_night.png
https://commons.wikimedia.org/wiki/File:Europe_night.png

8 Problem C: Brexit

Sample Input 1 Sample Output 1
4 3 4 1 stay

2 3

2 4

1 2

Sample Input 2 Sample Output 2
5 5 1 1 leave

3 4

1 2

2 3

1 3

2 5

Sample Input 3 Sample Output 3
4 5 3 1 stay

1 2

1 3

2 3

2 4

3 4

Sample Input 4 Sample Output 4
10 14 1 10 leave

1 2

1 3

1 4

2 5

3 5

4 5

5 6

5 7

5 8

5 9

6 10

7 10

8 10

9 10

Problem D: Bridge Automation 9

D Bridge Automation

In Delft there are a number of bridges that are still being operated
by a human, known as the bridge operator. One such bridge
operator will soon retire, hence there is the need for a replacement.
The Bridge And Poker Committee has decided to use a computer
program to automatically open and close the bridge, eliminating
the need for human interaction.

However, the computer program still needs to be written. The requirements for this project
are as follows:

1. No boat may be forced to wait for more than 30 minutes.

2. The amount of time during which the bridge is unavailable to road traffic must be as
small as possible while still satisfying requirement 1.

It takes 60 seconds to raise or lower the bridge. During this time the bridge is not available
to either road traffic or water traffic.

Boats arrive at the bridge at predictable times. It takes 20 seconds for a boat to sail through
the bridge, assuming the bridge is already fully raised.

If the bridge is not fully raised when a boat arrives, the boat must wait. If there are boats
waiting when the bridge becomes fully raised, these boats pass through the bridge one-by-one,
which takes 20 seconds per boat. The bridge must remain fully raised as long as there are
still boats sailing through! As soon as all boats have passed, the bridge may be lowered. But
it might be more efficient to keep the bridge raised for a little while longer if the next boat is
soon to arrive.

Given the arrival times of all boats, operate the bridge such that all boats can pass through
without any boat waiting longer than 30 minutes. What is the total amount of time during
which the bridge is unavailable to road traffic?

Input

The first line contains an integer N , the number of boats that must pass the bridge
(1 ≤ N ≤ 4 000).

Then follow N lines, each containing an integer Ti, the time at which boat i will arrive at the
bridge in seconds (60 ≤ Ti ≤ 105).

Boats are sorted by increasing time of arrival, and never arrive within 20 seconds of each
other (i < j implies Ti + 20 ≤ Tj).

Output

Write one line with an integer, the total number of seconds during which the bridge must be
unavailable for road traffic in order for all boats to pass the bridge.

10 Problem D: Bridge Automation

Sample Input 1 Sample Output 1
2 160

100

200

Sample Input 2 Sample Output 2
3 250

100

200

2010

Sample Input 3 Sample Output 3
3 300

100

200

2100

Problem E: Charles in Charge 11

E Charles in Charge

Picture by Frank Hebbert via Flickr

Every day, Charles drives from his home to work and back.
He uses the highways of the country that run from one city
to another. Charles has decided that he wants to help the
environment by buying an electrical car. Electrical cars,
however, are not very common in his country yet. They can
only be charged inside a city; there are no charging stations
along the highways in between the cities. Moreover, all
electrical cars are identical except for one thing: the size of
the battery. As batteries are very expensive, Charles would
like to buy a car with battery that is as small as possible.

However, this greatly increases the time it takes for him to get home, much to the distaste
of his wife, Charlotte. This has spawned an argument, and after much discussion they have
decided to compromise: Charlotte is fine with Charles taking a longer route, as long as it
its length is at most X% longer than the length of shortest route that Charles could have
taken to get home from work by using a regular car. Charles has agreed with this, and he
now wants to find a route that minimizes the size of the car battery that he needs, i.e. the
route that minimizes the maximum distance that Charles has to drive on a highway without
passing through a city.

The amount of time Charles spends to charge his car can be neglected.

Input

The input starts with integers 2 ≤ N ≤ 10 000, 1 ≤ M ≤ 100 000 and 0 ≤ X ≤ 10 000:
the number of cities, the number of highways connecting the cities and the aforementioned
percentage X. City 1 is the place where Charles lives and city N is where he works.

Then follow M lines with on each line three integers: 1 ≤ C1 ≤ N , 1 ≤ C2 ≤ N , 1 ≤ T ≤ 109.
This means that there is a highway of length T connecting cities C1 and C2 (Charles can
traverse the highway in both directions) without passing through any other cities. You may
assume that there exists a path from city 1 to city N .

Output

The output is a single integer: the smallest maximum distance that Charles has to travel on
a highway without passing through a city, such that the route he takes is at most X% longer
than the shortest route.

Sample Input 1 Sample Output 1
2 1 100 5

1 2 5

https://www.flickr.com/photos/f-r-a-n-k/359123912/
https://www.flickr.com/photos/f-r-a-n-k/359123912/

12 Problem E: Charles in Charge

Sample Input 2 Sample Output 2
9 8 15 5

1 9 16

1 4 4

4 5 4

5 6 4

6 8 4

4 7 5

7 8 5

8 9 4

Sample Input 3 Sample Output 3
9 8 30 4

1 9 16

1 4 4

4 5 4

5 6 4

6 8 4

4 7 5

7 8 5

8 9 4

Explanation of samples

1

4

5 6

7 8

9
16

5 5

4

4
4

4

4

Figure 2: The graph of the second and third test case. The shortest path has length 16. In the second
testcase, Charles’s travel distance may not exceed 16·1.15 = 18.4 distance units. As a result, he cannot
use a battery with which he can travel 4 distance units, as the red path 1–4–5–6–8–9 has length 20.
Therefore, he uses the blue path 1–4–7–8–9, which has length 18, and the longest edge has length 5.
In the third test case, he is allowed to travel 16 · 1.30 = 20.8 distance units, so he can follow the red
path, where the longest edge has length 4.

Problem F: Endless Turning 13

F Endless Turning

Picture by Cha già José via Flickr

Last week your little sister celebrated her birthday, and
she was very pleased with her birthday present: a brand
new scooter! Since then several times a day she goes
for a drive, without telling anyone. She will leave the
house, and go right on the pavement along the road.
Fortunately she knows that she is not allowed to cross
the road, and she is not sufficiently skilful with her new
toy to turn around on the pavement. This means that,
in order to continue her way, at each intersection she
must turn right.

Every time your sister sets out, you are sent after her,
of which you grow tired. Thus, knowing your little
sister’s ways with her scooter, you decide to write a
program to find her.

The city consists of R roads. Each road has a name which does not contain any spaces, and
is an infinite line in the Euclidean plane. No three roads go through one point, i.e. at every
intersection exactly two roads intersect. You figured out that your sister by this time should
have completed N turns on the intersections of the city, unless of course she managed to leave
the city by travelling on a road in a direction in which there is no other intersection, in which
case she might not be able to even complete N turns. Your task is to write a program that
tells you on which road your sister is right now.

Input

The first line contains four integers: the number of roads R, the number of turns N and the
X- and Y -coordinate of your parents’ home, satisfying R ≤ 100, N ≤ 1010 and |X|, |Y | ≤ 107.

The next R lines each describe a street. Each line contains one string S (without spaces,
containing only alphanumeric characters, of length at most 20), the name of the street, and
four integers X1, Y1, X2, and Y2, satisfying |X1|, |X2|, |Y1|, |Y2| ≤ 107 and (X1, Y1) 6= (X2, Y2),
indicating that road S goes through points (X1, Y1) and (X2, Y2).

The location of your parents’ home (X, Y) is guaranteed to lie on a unique non-vertical street
(i.e. not on an intersection), on the south (negative Y -direction) side of the street, meaning
that your little sister will depart in the east (positive X) direction. Moreover, each intersection
is guaranteed to have coordinates of absolute value at most 107, and is guaranteed to lie at
least 10−4 from each other intersection in the same street.

Output

Output a single line containing the name of the road where your little sister can be found.

https://www.flickr.com/photos/chagiajose/3482410154/
https://www.flickr.com/photos/chagiajose/3482410154/

14 Problem F: Endless Turning

Sample Input 1 Sample Output 1
3 4 1 1 Narrowlane

Broadway 0 0 0 1

Narrowlane 0 0 1 0

Homedrive 1 1 2 0

Sample Input 2 Sample Output 2
3 4 1 0 Homedrive

Broadway 0 0 0 1

Narrowlane 0 0 1 0

Homedrive 1 1 2 0

Homedrive

Narrowlane

Broadway

1

2

In the first case your sister starts on Homedrive heading east, turns right on Narrowlane,
Broadway, Homedrive and Narrowlane, which means that after four turns she is in Narrowlane.

In the second case your sister starts on Narrowlane heading east and turns right on Homedrive,
leaving the city behind her. She will never finish four turns and ends on Homedrive.

Problem G: Manhattan Positioning System 15

G Manhattan Positioning System

Figure 3: MPS is ideal for this city
c© OpenStreetMap contributors

The Manhattan Positioning System (MPS) is a mod-
ern variant of GPS, optimized for use in large cities.
MPS assumes all positions are discrete points on a reg-
ular two-dimensional grid. Within MPS, a position is
represented by a pair of integers (X,Y).

To determine its position, an MPS receiver first mea-
sures its distance to a number of beacons. Beacons have
known, fixed locations. MPS signals propagate only
along the X and Y axes through the streets of the city,
not diagonally through building blocks. When an MPS
receiver at (XR,YR) measures its distance to a beacon
at (XB,YB), it thus obtains the Manhattan distance:
|XR −XB|+ |YR − YB|.

Given the positions of a number of beacons and the
Manhattan-distances between the receiver and each
beacon, determine the position of the receiver. Note
that the receiver must be at an integer grid position
(MPS does not yet support fractional coordinates).

Input

The first line contains an integer N , the number of beacons (1 ≤ N ≤ 1000). Then follow
N lines, each containing three integers, Xi, Yi, and Di, such that −106 ≤ Xi, Yi ≤ 106 and
0 ≤ Di ≤ 4·106. The pair (Xi, Yi) denotes the position of beacon i, while Di is the Manhattan
distance between receiver and beacon i.

No two beacons have the same position.

Output

If there is exactly one receiver position consistent with the input, write one line with two
integers, XR and YR, the position of the receiver.

If multiple receiver positions are consistent with the input, write one line with the word
“uncertain”.

If no receiver position is consistent with the input, write one line with the word “impossible”.

Sample Input 1 Sample Output 1
3 1000200 799

999999 0 1000

999900 950 451

987654 123 13222

http://www.openstreetmap.org/copyright

16 Problem G: Manhattan Positioning System

Sample Input 2 Sample Output 2
2 uncertain

100 0 101

0 200 199

Sample Input 3 Sample Output 3
2 impossible

100 0 100

0 200 199

Sample Input 4 Sample Output 4
2 impossible

0 0 5

10 0 6

Problem H: Multiplying Digits 17

H Multiplying Digits

Picture by Mees de Vries

For every positive integer we may obtain a non-negative
integer by multiplying its digits. This defines a function
f , e.g. f(38) = 24.

This function gets more interesting if we allow for other
bases. In base 3, the number 80 is written as 2222, so:
f3(80) = 16.

We want you to solve the reverse problem: given a base B and a number N , what is the
smallest positive integer X such that fB(X) = N?

Input

The input consists of a single line containing two integers B and N , satisfying 2 < B ≤ 10000
and 0 < N < 263.

Output

Output the smallest positive integer solution X of the equation fB(X) = N . If no such X

exists, output the word “impossible”. The input is carefully chosen such that X < 263

holds (if X exists).

Sample Input 1 Sample Output 1
10 24 38

Sample Input 2 Sample Output 2
10 11 impossible

Sample Input 3 Sample Output 3
9 216 546

Sample Input 4 Sample Output 4
10000 5810859769934419200 5989840988999909996

This is not a blank page.

Problem I: Older Brother 19

I Older Brother

Your older brother is an amateur mathematician with lots of experience. However, his memory
is very bad. He recently got interested in linear algebra over finite fields, but he does not
remember exactly which finite fields exist. For you, this is an easy question: a finite field of
order q exists if and only if q is a prime power, that is, q = pk holds for some prime number
p and some integer k ≥ 1. Furthermore, in that case the field is unique (up to isomorphism).

The conversation with your brother went something like this:

A finite field of order q exists if and only if q is a prime power. (me)

(brother) Thanks! Just to be sure, what is a prime number?

A prime number is a number that has exactly two divisors. (me)

(brother) Right.

(brother) Remind me, what is a divisor?

Sigh. . . (me)

Never mind, I’ll write you a program. (me)

(brother) Awesome, thanks!

Input

The input consists of one integer q, satisfying 1 ≤ q ≤ 109.

Output

Output “yes” if there exists a finite field of order q. Otherwise, output “no”.

Sample Input 1 Sample Output 1
1 no

Sample Input 2 Sample Output 2
37 yes

Sample Input 3 Sample Output 3
65536 yes

This is not a blank page.

Problem J: Programming Tutors 21

J Programming Tutors

Picture by Damien Pollet via Flickr

You are the founder of the Bruce Arden Programming
Collective, which is a tutoring programme that matches
experienced programmers with newbies to teach them.
You have N students and N tutors, but now you have
to match them up. Since the students will have to travel
to their tutors’ houses from their own (or vice versa) you
decide to do your matching based on travel distance.

Minimising overall distance doesn’t seem fair; it might happen that one student has to travel
a huge distance while all the other students get a tutor very close by, even though the tutors
could have been split up so that each gets a tutor that is at least somewhat close.

Thus, you opt to minimise the distance travelled by the student who is worst off; one pairing
of students to tutors is better than another if the student who has to travel farthest in the
first pairing has to travel less far than the student who has to travel farthest in the second
pairing.

Because the students live in a city, the distance that a student needs to travel is not the
literal distance between them and their tutor. Instead, the distance between points (X, Y)
and (X ′, Y ′) in the city is

|X −X ′|+ |Y − Y ′|.

Input

The first line of the input contains an integer N , with 1 ≤ N ≤ 100, the number of students
and the number of tutors to pair up.

Then, there are N lines, each with two space separated integers with absolute value at most
108, which give the locations of the N students.

These are followed by N lines, each with two space separated integers with absolute value at
most 108, which give the locations of the N tutors.

Note that it is possible for students and/or tutors to have identical locations (they may share
a house).

Output

Output a single line containing a single integer K, where K is the least integer such that there
exists a pairing of students to tutors so that no pair has distance greater than K between
them.

https://www.flickr.com/photos/damienpollet/5048830734/
https://www.flickr.com/photos/damienpollet/5048830734/

22 Problem J: Programming Tutors

Sample Input 1 Sample Output 1
2 2

0 0

0 3

0 2

0 5

Sample Input 2 Sample Output 2
4 2

0 1

0 2

0 3

0 4

1 0

1 1

1 2

1 3

Sample Input 3 Sample Output 3
3 5

0 5

5 2

4 5

3 3

5 2

5 2

Sample Input 4 Sample Output 4
2 10

0 0

0 5

-1 4

8 3

Problem K: Safe Racing 23

K Safe Racing

Picture by Martin Pettitt via Flickr

Tomorrow is racing day. There will be yet another grand
prix in yet another country. Beside the safety car, there
are various other security measures in order to make sure
that everybody is as safe as possible. Among these safety
measures are the track marshals: special race officials
standing along the track with an assortment of flags that
they can use to signal various messages to the drivers. For
instance, the yellow flag warns the drivers of a dangerous
situation, and the blue flag is used to order a lapped car
to make way for one of the faster cars.

Every marshal should be stationed in a so-called marshal booth, a kind of protected cage that
is clearly visible from the race track. These booths are located at regular intervals of ten
metres (one decametre) along the track. The track is circular and L decametres long and
therefore contains exactly L booths.

Not every booth needs to be used. International racing regulations require that the distance
between two consecutive marshals should be at most S decametres, meaning that every S

consecutive booths should contain at least one marshal. The marshals are not responsible for
waving the finish flag, so it is not required (but also not forbidden) to have a marshal at the
start/finish.

This leaves you with many ways of assigning marshals to the various booths along the track.
Out of sheer curiosity you decide to calculate the total number of valid marshal assignments.
Reduce your answer modulo 123 456 789 in case it gets too large.

Input

The input consists of two integers L, the length of the track, and S, the maximal distance
between consecutive marshals along the track, satisfying 1 ≤ S ≤ L ≤ 106.

Output

Output the integer W , the number of ways to put marshals modulo 123 456 789. (Your answer
must satisfy 0 ≤W < 123 456 789.)

Sample Input 1 Sample Output 1
3 2 4

Sample Input 2 Sample Output 2
2500 2000 27511813

In the first sample test case, the four solutions are to put marshals at distances 0 and 1, at
distances 0 and 2, at distances 1 and 2, or, at distances 0, 1 and 2 (in decametres) from the
start.

https://www.flickr.com/photos/mdpettitt/2659854694/
https://www.flickr.com/photos/mdpettitt/2659854694/

This is not a blank page.

Problem L: Sticky Situation 25

L Sticky Situation

Picture by Jeanette Irwin via Flickr

While on summer camp, you are playing a
game of hide-and-seek in the forest. You need
to designate a “safe zone”, where, if the players
manage to sneak there without being detected,
they beat the seeker. It is therefore of utmost
importance that this zone is well-chosen.

You point towards a tree as a suggestion, but
your fellow hide-and-seekers are not satisfied.
After all, the tree has branches stretching far
and wide, and it will be difficult to determine
whether a player has reached the safe zone. They want a very specific demarcation for the
safe zone. So, you tell them to go and find some sticks, of which you will use three to mark a
non-degenerate triangle (i.e. with strictly positive area) next to the tree which will count as
the safe zone. After a while they return with a variety of sticks, but you are unsure whether
you can actually form a triangle with the available sticks.

Can you write a program that determines whether you can make a triangle with exactly three
of the collected sticks?

Input

The first line contains a single integer N , with 3 ≤ N ≤ 20 000, the number of sticks collected.
Then follows one line with N positive integers, each less than 260, the lengths of the sticks
which your fellow campers have collected.

Output

Output a single line containing a single word: possible if you can make a non-degenerate
triangle with three sticks of the provided lengths, and impossible if you can not.

Sample Input 1 Sample Output 1
3 possible

1 1 1

Sample Input 2 Sample Output 2
5 impossible

3 1 10 5 15

https://www.flickr.com/photos/jeanetteirwin/2622296147/
https://www.flickr.com/photos/jeanetteirwin/2622296147/

