Fast Fourier Transform: intro

Vladimir Smykalov

Toulouse, 2017

FFT introduction

Overall goal

Input: Given two polynomials $f(x)=a_0+a_1x+...+a_nx^n$ and $g(x)=b_0+b_1x+...+b_nx^n$

Output: Construct multiplication result $h(x) = f(x) \cdot g(x) = c_0 + c_1 x + ... + c_{2n} x^{2n}$

Straightforward solution -- $O(n^2)$

FFT approach -- $O(n \log n)$

Why do we even need to multiply polynomials

Applications are extremly wide!

Let's for example show the way to calculate for each number x from 1 to n the number of way to represent it as **sum of two primes** x = p1 + p2

Classic approach will only give us $O(n^2)$ complexity

Let's solve it with FFT!

Let
$$f(x) = (x^2 + x^3 + x^5 + x^7 + x^{11} + ...)$$

Calculate $g(x) = f(x) \cdot f(x) = a_0 + a_1 x + a_2 x^2 + ...$

Coefficients $a_0, a_1, a_2, ...$ are the answer to the problem $(a_t \text{ is the number of ways to represent } t \text{ as sum of two primes})$

Algo time is just $O(n \log n)$!

How FFT works

Let f(x) and g(x) be polynomials with degree $f(x)*g(x) < N = 2^k$ Let $z^0, z^1, ..., z^{N-1}$ be complex roots of equation $x^N - 1 = 0$

To be more precise, let $z^t = \cos(\frac{2\pi t}{N}) + i\sin(\frac{2\pi t}{N})$

Then there are several steps:

- 1. Calculate values of f(x) in points $z^0, z^1, ...$
- 2. Calculate values of g(x) in points $z^0, z^1, ...$
- 3. Get values of h(x) in points $z^0, z^1, ...$ using $h(z^t) = f(z^t) \cdot g(z^t)$
- 4. Interpolate this values back to coefficients of h(x)

The trick is to quickly do steps 1, 2, 4 in $O(N \log N)$ time

Let's start!

Have $f(x)=a_0+a_1x+...+a_{N-1}x^{N-1}$ where $N=2^k$ Want to calculate $f_t=f(z^t)$ for each t from 0 to N-1

Let's solve recursively!

Let
$$f(x)=f_{even}(x^2)+xf_{odd}(x^2)$$

So $f_{even}(x)=a_0+a_2x+a_4x^2+...$ and $f_{odd}(x)=a_1+a_3x+a_5x^2+...$

Let's calculate recursively $f_{even}^{(t)} = f_{even}(z^{2t})$

Now,
$$f(z^t)=f_{even}(z^{2t})+z^tf_{odd}(z^{2t})$$

$$f_t=f(z^t)=f_{even}^{(t)}+z^tf_{odd}^{(t)} \text{ for each } \texttt{0} \Leftarrow \texttt{t} \Leftarrow \texttt{N/2}$$

$$f_t=f(z^t)=f_{even}^{(t-N/2)}+z^tf_{odd}^{(t-N/2)} \text{ for each } \texttt{N/2} \Leftarrow \texttt{t} \Leftarrow \texttt{N}$$

Awesome!

Let's write pseudocode

```
def fft(a, N): # computes values of polynomial (sum a_i * x^i) in roots of x^i - 1 = 0
 if N == 1:
     return [a[0]]
 # split a to a_odd and a_even
 a_{odd} = [a[0], a[2], ...]
 a_{even} = [a[1], a[3], ...]
 # run fft recursively
 f odd = fft(a odd, N/2)
 f_{even} = fft(a_{even}, N/2)
 # reconstruct f values
 for i in 0 ... N/2-1:
     f[i] = f_{even}[i] + z[i] * f_{odd}[i]
     f[i+N/2] = f_{even}[i] + z[i+N/2] * f_{odd}[i]
 return f
```

How fast is algo?

Similar to segment trees, overall complexity is $O(N \log N)$

$$T(1)=1 \ T(N)=2\ T(N/2)+N$$

Solution:

$$T(N) = N \log_2(2N)$$

Let's remember steps

- 1. Calculate values of f(x) in points $z^0, z^1, ...$
- 2. Calculate values of g(x) in points $z^0, z^1, ...$
- 3. Get values of h(x) in points $z^0, z^1, ...$ using $h(z^t) = f(z^t) \cdot g(z^t)$
- 4. Interpolate this values back to coefficients of h(x)

Now we now how to do steps 1 and 2

But how to run interpolation?

Magic: reverse and run fft

Now we have $f_t = f(z^t)$

Want to get back $a_0, a_1, ...$ from $f(x) = a_0 + a_1 x + ...$

... but how?

Let's reverse segment [1, N-1] and write it as polynom

Let's
$$F(x) = f_0 + f_{N-1}x + f_{N-2}x^2 + ... + f_1x^{N-1}$$

Let's run fft(F, N)

Now,
$$a_t = rac{1}{N} F(z^t)$$

Magic (explanation)

What is $F(z^t)$?

$$\begin{split} F(z^t) &= f_0 + f_{N-1}z^t + f_{N-2}z^{2t} + \dots + f_1z^{(N-1)t} = \\ &= f(z^0) + f(z^{N-1})z^t + f(z^{N-2})z^{2t} + \dots + f(z^1)z^{(N-1)t} = \\ &= (a_0 + a_1z^0 + \dots) + (a_0 + a_1z^{N-1} + \dots)z^t + (a_0 + a_1z^{N-2} + \dots)z^{2t} + \dots = \\ &= a_0(z^0 + z^t + z^{2t} + \dots) + a_1(z^0 + z^{(N-1)+t} + z^{(N-2)+2t} + \dots) + \dots = \\ &= \sum a_s(z^0 + z^{(t-s)} + z^{2(t-s)} + \dots + z^{(N-1)(t-s)}) \end{split}$$

So much math... wait!

That means $F(z^t) = N \cdot a_t$!

Time to finish code for polynom multiplication!

```
def mult(a, b): # multplies {a} and {b} polynoms and returns result {c}
 # Step 1 and 2
 f = fft(a, N)
 g = fft(b, N)
# Step 3
 for i in 0 .. N-1:
     h[i] = f[i] * g[i]
 # Step 4
 reverse h[1 .. N-1]
 c = fft(h, N)
 # finishing touches
 for i in 0 .. N-1:
     c[i] = c[i] / N
 return c
```

quick fix, let's make code shorter

```
def mult(a, b): # multplies {a} and {b} polynoms and returns result {c}
 # Step 1 and 2
 f = fft(a, N)
 g = fft(b, N)
# Step 3
 for i in 0 .. N-1:
     h[i] = f[i] * g[i] / N
 # Step 4
 reverse h[1 .. N-1]
 c = fft(h, N)
 return c
```

Implementation

Notes

- solve fft-problems in c++ and only c++
- there is std class for complex numbers complex<double>
- try to write as efficient as possible (for example, creating new vector s inside recursion for f_odd and f_even is very timeconsumable, better to reuse memory)
- use your head to write code and not other things

How to write FFT efficiently as a whole another lecture!

But this knowledge is enough to solve basic problems!