Fast Fourier Transform: intro

Vladimir Smykalov

Toulouse, 2017



FFT introduction

Overall goal

Input: Given two polynomials f(x) = ag + a1 + ... + a,x™ and
g(x) = by + b1z + ... + bz

Output: Construct multiplication result h(z) = f(z) - g(z) = co + 1z + ... + copz™"

Straightforward solution -- O(n?)

FFT approach -- O(nlogn)



Why do we even need to multiply polynomials

Applications are extremly wide!

Let's for example show the way to calculate for each number x from 1 to n the number of
way to represent it as sum of two primes x = p1 + p2

Classic approach will only give us O(n?) complexity

Let's solve it with FFT!

Let f(z) = (2 + 2 +2° + 2" + 21 +..)
Calculate g(z) = f(z) - f(x) = ag + a1z + azx® + ...

Coefficients ag, a1, as, ... are the answer to the problem

(at is the number of ways to represent ¢ as sum of two primes)

Algo time is just O(nlogn)!



How FFT works

Let f(ZB) and g(CB) be polynomials with degree f(x)*g(x) < N = 2~k

1

Let 20, 21 ..., 271 be complex roots of equation ¥ —1 =0

To be more precise, let 2* = cos(2&%) + ¢ sin(2£4)

Then there are several steps:

1. Calculate values of f(z) in points 2°, 2!, ...

2. Calculate values of g(z) in points 2Y, 21, ...
3. Get values of h(z) in points 2°, 2%, ... using h(2") = f(2?) - g(2?)

4. Interpolate this values back to coefficients of h(x)

The trick is to quickly do steps 1, 2, 4in O(IN log N) time



Let's start!

Have f(x) = ag + a1z + ... + ay_12"¥ ! where N = 2*
Want to calculate f; = f(2%) for each t from e to N-1

Let's solve recursively!
Let f(iB) — feven(wz) + xfodd(w2)

SO feoven(T) = ag + asx + agz?® + ... and fogq(z) = a1 + azz + asz® + ...

. t
Let's calculate recursively fe(fu)en = feven(Z%)

Now, f(zt) — fe'ven(z2t) + thodd(ZZt)
fi = f(z") = fe(f,)en -+ ztfo(fl)d foreach @ <= t < N/2

fr = F(2) = floan ) + 2t éfl;N/z) for each N/2 <= t < N

Awesome!



Let's write pseudocode

def fft(a, N): # computes values of polynomial (sum a i * x*i1) in roots of x*N - 1 = ©
if N == 1:
return [a[0]]

# split a to a odd and a _even
a_odd = [a[@], a[2], ...]
a_even = [a[l], a[3], ...]

# run fft recursively
f odd = fft(a_odd, N/2)
f even = fft(a_even, N/2)

# reconstruct f values

for i in © .. N/2-1:
f[i] = f even[i] + z[i] * f _odd[i]
f[i+N/2] = f even[i] + z[i+N/2] * f odd[i]

return f




How fast is algo?

Similar to segment trees, overall complexity is O(N log N)

T(1) = 1
T(N)=2T(N/2) + N

Solution:
T(N) = Nlog,(2N)



Let's remember steps

0 .1

1. Calculate values of f(x) in points 2°, 2+, ...

2. Calculate values of g(z) in points 27, 21, ...
3. Get values of h(z) in points 2%, 21, ... using h(2%) = f(2!) - g(2!)

4. Interpolate this values back to coefficients of h(x)

Now we now how to do steps 1 and 2

But how to run interpolation?



Magic: reverse and run fft
Now we have f; = f(2*)
Want to get back ag, a1, ... from f(z) = ag + a1z + ...

... but how?

Let's reverse segment [1, N-1] and write it as polynom

Let's F(z) = fo+ fy-12 + fy_o@® + ... + frzV !
Let's run fft(F, N)

Now, a; = %F(zt)



Magic (explanation)

What is F'(z%) ?

F(2') = fo+ fyv-12" + fy_o2® + o+ frzWV D =

= () + FN )+ FN ) ()N

= (ag+a12" +...) +(ag + a2V 1 +.)2t + (ag + a2V 2+ )22 + ... =

= ag(20 + 2t + 22 + ) Fag (20 + 2V 4 f(N=2428 1 ) =
_Za8(0+zt3)—|—z(t 3)_|_ _|_z( 1)(t— 3))
So much math... wait!

20 4 (=) 4 R20t-9) 4 Z(N-D(E=9) s o if ¢ 1= s
204 278 22079) 1 2NN sy if == s

That means F'(z') = N - a; !



Time to finish code for polynom multiplication!

def mult(a, b): # multplies {a} and {b} polynoms and returns result {c}
# Step 1 and 2
f = fft(a, N)
g = fft(b, N)

# Step 3
for i in ©6 .. N-1:

h[i] = f[i] * g[1i]

# Step 4
reverse h[1l .. N-1]
c = fft(h, N)

# finishing touches
for i in © .. N-1:
c[i] = c[i] / N

return c




quick fix, let's make code shorter

def mult(a, b): # multplies {a} and {b} polynoms and returns result {c}
# Step 1 and 2

f = fft(a, N)
g = fft(b, N)
# Step 3

for 1 in © .. N-1:
h[i] = f[i] * g[i] / N
# Step 4
reverse h[1l .. N-1]
c = fft(h, N)

return c




Implementation

Notes

e solve fft-problems in c++ and only c++
e thereis std class for complex numbers complex<double>

e try to write as efficient as possible (for example, creating new vector s inside recursion
for f_odd and f_even is very timeconsumable, better to reuse memory)

e use your head to write code and not .... other things

How to write FFT efficiently as a whole another lecture!

But this knowledge is enough to solve basic problems!



