Math: tips, tricks and hacks

Vladimir Smykalov

Toulouse, 2017



Finding modular inverse

Problem description

Input: a, m,sothat gcd(a , m) = 1

Output: x,sothat a * x == 1 (mod m)



Prime module

Fermat's little theorem: a~(p-1) == 1 (mod p)
So, a * a*(p-2) == 1 (mod p)
Then x = a~(p-2) is good

Just use binary exponentiation



General case (not-prime modules)

Solution 1: Euler's theorem
Solution 2: Euclidean algorithm

Solution 3: magic



General case (not-prime modules)

Solution 1: Euler's theorem

Euler's theorem: a ~ phi(m) == 1 (mod m)
Where phi(m) -- the number of 1 <= x <= m such that gcd(x, m) = 1

Find phi(m) than use binary exponentiation



Quick note on finding phi(m)

That's easy!

According to math, if m = p1rk1 * p2~k2 * ...
than phi(m) = m * (p1-1)/p1 * (p2-1)/p2 * ...

So, can be easily found in O(4/m)

int get_phi(int m)

{
int r = m;
for (int i = 2; i * i <=m; ++i) if (m % i == Q)
{

r=r /1i1%* (1-1);
while (m % i == 90) m /= i;

}
if(m>1)r=r/m* (m-1);
return r;




General case (not-prime modules)

Solution 2: Euclidean algorithm

Since gcd(a, m) = 1, there exist x and vy,
suchthat a * x + m *y = 1

Then a * x == 1 (mod m)



General case (not-prime modules)

Solution 3: magic

int rev(int a, int m)
{
if (a == 1) return 1;
return (1 - rev(m % a, a) * (long long)m) / a + m;

}




Chinese Reminder Theorem

Problem description

Input: pairs (a1, m1), (a2, m2), ...,suchthat gcd(m_i, m_j) = 1 forevery i, j
Output: x such that x == a_i (mod m_i) forevery i



Chinese Reminder Theorem

Lets solve this for two pairs (a1, m1) and (a2, m2)
(after that we will be able to combine them into one (x, m1 * m2) and move on to next pairs)

Want x == a1l (mod m1) and x == a2 (mod m2)
Llet x = a1l + k * ml

Want a1l + k * m1 == a2 (mod m2)
k * ml == a2 - al (mod m2)
k == (a2 - al) * rev(ml, m2) (mod m2)

Profit!



Primitive roots

Let p be prime number

Then there exist g such that:

q’, g', g°, ...,g(p_2) Is a permutation of 1, 2, ..., p-1



Primitive roots

How to check is g is primitive root

If g is primitive root, then the smallest a such that g*a == 1 (mod p) Is a = p-1
Also, for every smallest such a we have (p-1) % a = @

So... if for every x suchthat (p-1) % x = @ we have g*x != 1 (mod p) than g is primitive
root



Primitive roots

How to find primitive root

Fact: smallest primitive root is very-very small

So, we can iterate g from 1 to (p-1) and check every time. Once check returns true, we

found it
Rumors say that the smallest primitive root is O(log log p)



Discrete logarithm

Problem description

Input: g, a and prime module p
Output: x such that g2x == a (mod p)



Discrete logarithm

Algo is called baby-step giant-step

Suppose m is approx. sqrt(p) , butis strictly greater than sqrt(p)

Now, let x =y *m - z,where 1 <=y <=mand 1 <=z <=m
(this scheme allows us every number from @ to m*2 - 1)
Want g~x == a,so g ~ (y*m-z) == a

gr(y*m) == a * gz (mod p)

Now we have m possible values for left side of equation (for each y)
Same way we have m possible values for right side (for each z)

So we can check if there is a match in O(m log m)
So... the total run-time of algo is O(,/p log p)



Calculating combinations (n, k) % mod for n <= 1076

Sometimes math problems forces us to quickly compute (Z) in O(1) time

Way 1: (basic) precalculate (n, k) for all possible pairs in O(n?) time,

using relation (n, k) = (n-1, k-1) + (n-1, k) . But that's too slow for large n



Calculating combinations (n, k) % mod for n <= 1076

Way 2: precalculate fact(n) and rev(fact(n)) for each n.

n!

After that with relation () = F(n_%)1 We can compute in O(1) time

But how to precalculate rev(fact(n)) in 0o(n) time?

Step 1: Calculate fact(n) for the largest n in O(n)
Step 2: Calculate rev(fact(n)) forlargest n in O(log)
Step 3: Use rev(fact(k)) = rev(fact(k+1)) * (k+1) to evaluate values for smaller n in O(n)

So in total we can after precalc in O(n + log) time we can compute (}) in O(1) time



