
Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
Problem A. Determine Robot’s Score

Input file: robot.in
Output file: robot.out
Time limit: 2 seconds
Memory limit: 256 megabytes

You built a robot for a Robot Challenge. The challenge
is set up in a 100m by 100m space. Certain points
are identified within the space as targets. They are
ordered — there are target 1, target 2, etc. Your robot
must start at (0, 0). From there, it should go to target 1,
stop for 1 second, then go to target 2, stop for 1 second,
and so on. It must finally end up at (100, 100) and then
wait for one second.

Each target except (0, 0) and (100, 100) has a time
penalty for missing it. So, if your robot went straight
from target 1 to target 3, skipping target 2, it would
incur penalty for the second target. Note that once it
hits target 3, it cannot go back to target 2. It must
hit the targets in order. Since your robot must stop
for 1 second on each target point, if you pass the
target without stopping there — it does not count. For
example, if target 3 lies directly between target points
1 and 2, your robot can go straight from 1 to 2, right
over 3, without stopping. Since it didn’t stop, the judges
will not mistakenly think that it hit target 3 too soon,
so they won’t count the penalty of the second target.
Your final score is the amount of time (in seconds) your
robot takes to reach (100, 100), completing the course,
plus all penalties. Smaller scores are better.

Your robot is very maneuverable, but a bit slow. It
moves at 1 m/s, but can turn very quickly. During the
1 second it stops on a target point, it can easily turn to
face the next target point. Thus, it can always move in a
straight line between target points. Because your robot
is a bit slow, it might be advantageous to skip some
targets, and incur their penalty, rather than actually
maneuvering to them. Given a description of a course,
determine your robot’s best (lowest) possible score.

Input

There will be several test cases. Each test case will
begin with a line with one integer, N (1 ≤ N ≤ 1000)
which is the number of targets on the course. Each
of the next N lines will describe a target with three
integers, X, Y and P , where (X,Y) is a location on
the course (1 ≤ X,Y ≤ 99, X and Y in meters) and P
is the penalty incurred if the robot misses that target
(1 ≤ P ≤ 100). The targets will be given in order —the
first line after N is target 1, the next is target 2, and so
on. All the targets on a given course will be unique —
there will be at most one target point at any location on
the course. End of input will be marked by a line with
a single 0.

Output

For each test case, output a single decimal number,
indicating the smallest possible score for that course.
Your answer must have error 10−3 or less. Print each
answer on its own line, and do not print any blank lines
between answers.

Examples

robot.in robot.out
1
50 50 20
3
30 30 90
60 60 80
10 90 100
3
30 30 90
60 60 80
10 90 10
0

143.421
237.716
154.421

Problem B. Cookie Clicker
Input file: cookie.in
Output file: cookie.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Kostya is playing the computer game Cookie Clicker.
The goal of this game is to gather cookies. You can get
cookies using different buildings: you can just click a
special field on the screen and get the cookies for the
clicks, you can buy a cookie factory, an alchemy lab, a
time machine and it all will bring lots and lots of cookies.

At the beginning of the game (time 0), Kostya has 0
cookies and no buildings. He has n available buildings
to choose from: the i-th building is worth ci cookies
and when it’s built it brings vi cookies at the end of
each second. Also, to make the game more interesting
to play, Kostya decided to add a limit: at each moment
of time, he can use only one building. Of course, he can
change the active building each second at his discretion.

It’s important that Kostya is playing a version of the
game where he can buy new buildings and change active
building only at time moments that are multiples of one
second. Kostya can buy new building and use it at the
same time. If Kostya starts to use a building at the time
moment t, he can get the first profit from it only at the
time moment t+ 1.

Kostya wants to earn at least s cookies as quickly as
possible. Determine the number of seconds he needs to
do that.

Page 1 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
Input

The first line contains two integers n and s
(1 ≤ n ≤ 2 · 105, 1 ≤ s ≤ 1016) — the number of
buildings in the game and the number of cookies Kostya
wants to earn.

Each of the next n lines contains two integers vi and ci
(1 ≤ vi ≤ 108, 0 ≤ ci ≤ 108) — the number of cookies
the i-th building brings per second and the building’s
price.

Output

Output the only integer — the minimum number of
seconds Kostya needs to earn at least s cookies. It is
guaranteed that he can do it.

Examples

cookie.in cookie.out
3 9
1 0
2 3
5 4

6

3 6
1 0
2 2
5 4

5

3 13
1 0
2 2
6 5

7

1 10000000000000000
1 0

10000000000000000

Problem C. Product Sum
Input file: sum.in
Output file: sum.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Blake is the boss of Kris, however, this doesn’t spoil
their friendship. They often gather at the bar to
talk about intriguing problems about maximising some
values. This time the problem is really special.

You are given an array a of length n. The characteristic

of this array is the value c =
n∑

i=1
ai · i — the sum of the

products of the values ai by i. One may perform the
following operation exactly once: pick some element
of the array and move to any position. In particular,
it’s allowed to move the element to the beginning or to
the end of the array. Also, it’s allowed to put it back to
the initial position. The goal is to get the array with the
maximum possible value of characteristic.

Input

The first line of the input contains a single integer n
(2 ≤ n ≤ 200 000) — the size of the array a.

The second line contains n integers ai (1 ≤ i ≤ n,
|ai| ≤ 1 000 000) — the elements of the array a.

Output

Print a single integer — the maximum possible value of
characteristic of a that can be obtained by performing
no more than one move.

Examples

sum.in sum.out
4
4 3 2 5

39

5
1 1 2 7 1

49

3
1 1 2

9

Note

In the first sample, one may pick the first element and
place it before the third (before 5). Thus, the answer
will be 3 · 1 + 2 · 2 + 4 · 3 + 5 · 4 = 39.

In the second sample, one may pick the fifth element of
the array and place it before the third. The answer will
be 1 · 1 + 1 · 2 + 1 · 3 + 2 · 4 + 7 · 5 = 49.

Problem D. Function
Input file: function.in
Output file: function.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Serega and Fedor play with functions. One day they
came across a very interesting function. It looks like
that:

• f(1, j) = a[j], 1 ≤ j ≤ n.

• f(i, j) = min(f(i − 1, j), f(i − 1, j − 1)) + a[j],
2 ≤ i ≤ n, i ≤ j ≤ n.

Here a is an integer array of length n.

Serega and Fedya want to know what values this
function takes at some points. But they don’t want to

Page 2 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
calculate the values manually. So they ask you to help
them.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the
length of array a. The next line contains n integers:
a[1], a[2], ..., a[n] (0 ≤ a[i] ≤ 104).

The next line contains integer m (1 ≤ m ≤ 105) — the
number of queries. Each of the nextm lines contains two
integers: xi, yi (1 ≤ xi ≤ yi ≤ n). Each line means that
Fedor and Serega want to know the value of f(xi, yi).

Output

Print m lines — the answers to the guys’ queries.

Examples

function.in function.out
6
2 2 3 4 3 4
4
4 5
3 4
3 4
2 3

12
9
9
5

7
1 3 2 3 4 0 2
4
4 5
2 3
1 4
4 6

11
4
3
0

Problem E. Ciel and Gondolas
Input file: gondolas.in
Output file: gondolas.out
Time limit: 4 seconds
Memory limit: 512 megabytes

Fox Ciel is in the Amusement Park. And now she is in a
queue in front of the Ferris wheel. There are n people (or
foxes more precisely) in the queue: we use first people
to refer one at the head of the queue, and n-th people
to refer the last one in the queue.

There will be k gondolas, and the way we allocate
gondolas looks like this:

• When the first gondolas come, the q1 people in head
of the queue go into the gondolas.

• Then when the second gondolas come, the q2 people
in head of the remain queue go into the gondolas.

...

• The remain qk people go into the last (k-th)
gondolas.

Note that q1, q2, ..., qk must be positive. You can get

from the statement that
k∑

i=1
qi = n and qi > 0.

You know, people don’t want to stay with strangers
in the gondolas, so your task is to find an optimal
allocation way (that is find an optimal sequence q) to
make people happy. For every pair of people i and j,
there exists a value uij denotes a level of unfamiliar.
You can assume uij = uji for all i, j (1 ≤ i, j ≤ n) and
uii = 0 for all i (1 ≤ i ≤ n). Then an unfamiliar value of
a gondolas is the sum of the levels of unfamiliar between
any pair of people that is into the gondolas.

A total unfamiliar value is the sum of unfamiliar
values for all gondolas. Help Fox Ciel to find the
minimal possible total unfamiliar value for some optimal
allocation.

Input

The first line contains two integers n and k
(1 ≤ n ≤ 4000 and 1 ≤ k ≤ min(n, 800)) — the number
of people in the queue and the number of gondolas. Each
of the following n lines contains n integers — matrix u,
(0 ≤ uij ≤ 9, uij = uji and uii = 0).

Please, use fast input methods (for example, please use
BufferedReader instead of Scanner for Java).

Output

Print an integer — the minimal possible total unfamiliar
value.

Examples

gondolas.in gondolas.out
5 2
0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

0

8 3
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0

7

3 2
0 2 0
2 0 3
0 3 0

2

Page 3 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
Note

In the first example, we can allocate people like this: 1, 2
goes into a gondolas, 3, 4, 5 goes into another gondolas.

In the second example, an optimal solution is : 1, 2, 3 |
4, 5, 6 | 7, 8.

Problem F. Hard drive disks
Input file: hard.in
Output file: hard.out
Time limit: 2 seconds
Memory limit: 512 megabytes

There are n pairs of hard drive disks(HDDs) in a cluster.
Each HDD can be represented as a point on the infinite
straight line with integer coordinate. In each pair one
HDD is main and one is backup.

You want to set up k computers(which also points on
the same line with integer coordinates) and then connect
some HDDs with computers via wires. After that main
and backup HDDs in each pair must be connected
with the same computer. Each HDD must be connected
with exactly one computer and each computer can be
connected with any number of HDDs(possibly zero).
Each wire must connect one HDD with one computer
and its length is the distance between corresponding
points on the line. What is the minimum possible total
length of wires you can achieve?

Input

The first line contains two integers n and k - the number
of pairs of HDDs and the number of computers. Each of
the next n lines contain two integers ai, bi - coordinates
of main and backup HDDs.

Constraints

2 ≤ k ≤ n ≤ 100000

4 ≤ k × n ≤ 100000

−109 ≤ ai, bi ≤ 109

Output

Output must contain single number - the answer to the
question.

Example

hard.in hard.out
5 2
6 7
-1 1
0 1
5 2
7 3

13

Note

In the sample, it’s optimal to place computers at the
positions 0 and 6. Then connect the second and the third
pairs of HDDs with the first computer and the others
with the second. The total length of wires connected
with the first computer will be 3 and 10 for the second
one giving a total length of 13.

Problem G. Levels and Regions
Input file: levels.in
Output file: levels.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Radewoosh is playing a computer game. There are n
levels, numbered 1 through n. Levels are divided into
k regions (groups). Each region contains some positive
number of consecutive levels.

The game repeats the the following process:

1. If all regions are beaten then the game ends
immediately. Otherwise, the system finds the first
region with at least one non-beaten level. Let X
denote this region.

2. The system creates an empty bag for tokens. Each
token will represent one level and there may be
many tokens representing the same level.

• For each already beaten level i in the regionX,
the system adds ti tokens to the bag (tokens
representing the i-th level).
• Let j denote the first non-beaten level in the

region X. The system adds tj tokens to the
bag.

3. Finally, the system takes a uniformly random
token from the bag and a player starts the level
represented by the token. A player spends one hour
and beats the level, even if he has already beaten
it in the past.

Given n, k and values t1, t2, . . . , tn, your task is to split
levels into regions. Each level must belong to exactly
one region, and each region must contain non-empty
consecutive set of levels. What is the minimum possible
expected number of hours required to finish the game?

Input

The first line of the input contains two integers n and
k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ min(50, n)) — the number
of levels and the number of regions, respectively.

The second line contains n integers t1, t2, . . . , tn
(1 ≤ ti ≤ 100 000).

Page 4 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
Output

Print one real number — the minimum possible expected
value of the number of hours spent to finish the game
if levels are distributed between regions in the optimal
way. Your answer will be considered correct if its
absolute or relative error does not exceed 10−4.

Namely: let’s assume that your answer is a, and the
answer of the jury is b. The checker program will
consider your answer correct if |a−b|

max(1,b) ≤ 10−4.

Examples

levels.in levels.out
4 2
100 3 5 7

5.7428571429

6 2
1 2 4 8 16 32

8.5000000000

Note

In the first sample, we are supposed to split 4 levels into
2 regions. It’s optimal to create the first region with only
one level (it must be the first level). Then, the second
region must contain other three levels.

In the second sample, it’s optimal to split levels into two
regions with 3 levels each.

Problem H. Kalila and Dimna in the Logging
Industry

Input file: logging.in
Output file: logging.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Kalila and Dimna are two jackals living in a huge jungle.
One day they decided to join a logging factory in order
to make money.

The manager of logging factory wants them to go to the
jungle and cut n trees with heights a1, a2, . . . , an. They
bought a chain saw from a shop. Each time they use the
chain saw on the tree number i, they can decrease the
height of this tree by one unit. Each time that Kalila
and Dimna use the chain saw, they need to recharge it.
Cost of charging depends on the id of the trees which
have been cut completely (a tree is cut completely if its
height equal to 0). If the maximum id of a tree which
has been cut completely is i (the tree that have height
ai in the beginning), then the cost of charging the chain
saw would be bi. If no tree is cut completely, Kalila and
Dimna cannot charge the chain saw. The chainsaw is
charged in the beginning. We know that for each i < j,
ai < aj and bi > bj and also bn = 0 and a1 = 1. Kalila
and Dimna want to cut all the trees completely, with
minimum cost.

They want you to help them! Will you?

Input

The first line of input contains an integer n
(1 ≤ n ≤ 105). The second line of input contains n
integers a1, a2, . . . , an (1 ≤ ai ≤ 109). The third line of
input contains n integers b1, b2, . . . , bn (0 ≤ bi ≤ 109).

It’s guaranteed that a1 = 1, bn = 0, a1 < a2 < · · · < an
and b1 > b2 > · · · > bn.

Output

The only line of output must contain the minimum cost
of cutting all the trees completely.

Please, do not write the %lld specifier to read or write
64-bit integers in С++. It is preferred to use the cin,
cout streams or the %I64d specifier.

Examples

logging.in logging.out
5
1 2 3 4 5
5 4 3 2 0

25

6
1 2 3 10 20 30
6 5 4 3 2 0

138

Problem I. Candies and Stones
Input file: candies.in
Output file: candies.out
Time limit: 20 seconds
Memory limit: 256 megabytes

Little Gerald and his coach Mike play an interesting
game. At the beginning of the game there is a pile
consisting of n candies and a pile consisting of m stones.
Gerald and Mike move in turns, Mike goes first. During
his move Mike checks how many candies and stones
Gerald has eaten. Let Gerald eat a candies and b stones.
Then Mike awards Gerald f(a, b) prize points. Gerald
during his move either eats a candy from the pile of
candies or a stone from the pile of stones. As Mike sees
that Gerald has eaten everything apart one candy and
one stone, he awards points for the last time and the
game ends. Gerald is not allowed to eat all the candies,
and he is not allowed to eat all the stones too. Tell
Gerald how to play to get the largest possible number of
points: it is required to find one of the possible optimal
playing strategies for Gerald.

Input

The first line contains three integers n,m, p
(1 ≤ n,m ≤ 20000, 1 ≤ p ≤ 109). The second line
contains n integers x0, x1, . . . , xn−1 (0 ≤ xi ≤ 20000).

Page 5 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
The third line contains m integers y0, y1, . . . , ym−1
(0 ≤ yi ≤ 20000). The value of f(a, b) is calculated as a
remainder of the division of the sum xa + yb by number
p.

Output

Print on the first line the only number: the maximal
number of points Gerald can earn. Print on the second
line a sting consisting of n +m − 2 characters, each of
which is either a “C” or “S”, the i-th character should be
“C” if Gerald’s i-th move should be eating a candy and
“S” if he should eat a stone.

Examples

candies.in candies.out
2 2 10
0 0
0 1

2
SC

3 3 10
0 2 0
0 0 2

10
CSSC

3 3 2
0 1 1
1 1 0

4
SCSC

Note

In the first test if Gerald’s first move is eating a stone,
he will receive a point for it and if he eats a candy, he
will get zero pints. In any way Gerald will get 0 points
before his first move, and 1 after his second one. This,
the maximum number of points Gerald can get equals
to 2, and for that he should first eat a stone, then a
candy.

Problem J. ACM and ICPC
Input file: acm.in
Output file: acm.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Consider a ACM trees with next features:

• A non-negative integer value is assigned to each
vertex;

• Each vertex has no more than two children.

Lets call the ACM tree ICPC, if it has the following
features:

• Value of each vertex is the sum of values of its
children;

• Value of each leaf is not greater than 1.

Given an ACM tree. We can do the following operations:

• add 1 to the value of some vertex;

• subtract 1 from the value of some vertex;

Find out the minimal number of operations needed to
transform given ACM tree to the ICPC tree.

Input

The first line of the input contains one integer — number
of vertices in the given ACM tree (1 ≤ n ≤ 5000).
Second line contains two integers ai (0 ≤ ai ≤ 5000);
i-th of these integers denotes the value of i-th vertex.
i-th of the next n− 1 lines contains two integers a and
b (1 ≤ a, b ≤ n) denoting that vertices a and b are
connected by an edge. Root of the ACM tree is placed
at the vertex with number 1.

Output

Print minimum number of operations, needed to
transform given ACM tree into ICPC tree.

Examples

acm.in acm.out
2
1 0
1 2

1

5
5 1 3 0 1
1 2
1 3
3 4
3 5

4

Problem K. Tavas and Pashmaks
Input file: tavas.in
Output file: tavas.out
Time limit: 1 second
Memory limit: 256 megabytes

Tavas is a cheerleader in the new sports competition
named "Pashmaks".

Page 6 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
This competition consists of two part: swimming and
then running. People will immediately start running R
meters after they finished swimming exactly S meters.
A winner is a such person that nobody else finishes
running before him/her (there may be more than one
winner).

Before the match starts, Tavas knows that there are n
competitors registered for the match. Also, he knows
that i-th person’s swimming speed is si meters per
second and his/her running speed is ri meters per
second. Unfortunately, he doesn’t know the values of R
and S, but he knows that they are real numbers greater
than 0.

As a cheerleader, Tavas wants to know who to cheer up.
So, he wants to know all people that might win. We
consider a competitor might win if and only if there are
some values of R and S such that with these values,
(s)he will be a winner.

Tavas isn’t really familiar with programming, so he
asked you to help him.

Input

The first line of input contains a single integer n
(1 ≤ n ≤ 2× 105).

The next n lines contain the details of competitors. i-th
line contains two integers si and ri (1 ≤ si, ri ≤ 104).

Output

In the first and the only line of output, print a sequence
of numbers of possible winners in increasing order.

Examples

tavas.in tavas.out
3
1 3
2 2
3 1

1 2 3

3
1 2
1 1
2 1

1 3

Problem L. Igloo Skyscraper
Input file: igloo.in
Output file: igloo.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Today the North Pole hosts an Olympiad in a sport
called. . . toy igloo skyscrapers’ building!

There are n walruses taking part in the contest. Each
walrus is given a unique number from 1 to n. After start

each walrus begins to build his own igloo skyscraper.
Initially, at the moment of time equal to 0, the height
of the skyscraper i-th walrus is equal to ai. Each minute
the i-th walrus finishes building bi floors.

The journalists that are reporting from the spot where
the Olympiad is taking place, make q queries to the
organizers. Each query is characterized by a group of
three numbers li, ri, ti. The organizers respond to each
query with a number x, such that:

1. Number x lies on the interval from li to ri inclusive
(li ≤ x ≤ ri).

2. The skyscraper of the walrus number x possesses the
maximum height among the skyscrapers of all walruses
from the interval [li, ri] at the moment of time ti.

For each journalists’ query print the number of the
walrus x that meets the above-given criteria. If there
are several possible answers, print any of them.

Input

The first line contains numbers n and q (1 ≤ n, q ≤ 105).
Next n lines contain pairs of numbers ai, bi
(1 ≤ ai, bi ≤ 109). Then follow q queries i the following
format li, ri, ti, one per each line (1 ≤ li ≤ ri ≤ n,
0 ≤ ti ≤ 106). All input numbers are integers.

Output

For each journalists’ query print the number of the
walrus x that meets the criteria, given in the statement.
Print one number per line.

Page 7 of 8

Universite Toulouse III Training Camp. Day 02.
Dynamic programming optimizations. Problems from Codeforces and MIPT Camp.

13 December 2016
Examples

igloo.in igloo.out
5 4
4 1
3 5
6 2
3 5
6 5
1 5 2
1 3 5
1 1 0
1 5 0

5
2
1
5

5 4
6 1
5 1
2 5
4 3
6 1
2 4 1
3 4 5
1 4 5
1 2 0

3
3
3
1

Page 8 of 8

