

The University of Chicago Invitational Programming Contest 2012

 Page 1 of 14 15 April 2012

The University of Chicago

Invitational Programming Contest

2012

PROBLEMS
A: CosmoCraft ... 2

B: Covered Walkway ... 4

C: Double Dealing ... 5

D: The End of the World ... 6

E: Estimation ... 7

F: Juggler .. 8

G: Red/Blue Spanning Tree .. 9

H: The Red Gem .. 10

I: Science!... 12

J: The Worm in the Apple .. 13

The University of Chicago Invitational Programming Contest 2012

 Page 2 of 14 15 April 2012

A: CosmoCraft
In the two-player game CosmoCraft you manage an economy in the hopes of
producing an army capable of defeating your opponent. You manage the
construction of workers, production facilities, and army units; the game revolves
around balancing the resources you allocate to each. The game progresses in
turns.

 Workers give you income at the rate of 1 dollar per turn.

 Production facilities let you produce either an army unit or a worker for the
cost of 1 dollar. (only 1 army unit or worker can be produced per turn per
facility)

 It costs 1 dollar to create a production facility.

 Your army, of course, lets you fight against your opponent.

You start off with n workers and k production facilities. The game progresses in
turns – at each turn, you can spend the income you get from your workers on a
mixture of workers, army, and creating production facilities. Workers produced
this round do not give you income until the next round; likewise, production
facilities do not become active until the next round. Any unspent income from the
current round carries over to the next.

At the end of a round, you can take the total army you’ve produced and attack
your opponent; if you have strictly more units than your opponent, the opponent
loses immediately, and you retain the difference of the army sizes. Otherwise,
your army is crushed and your opponent is left with the difference of the army
sizes. (it would be wise for him to counter-attack after this, but you don’t lose
immediately at least). The game ends after t turns, at which point both players
will usually attack with the larger army reigning victorious.

You’re playing against your friend, and since you’ve played against him so many
times you know exactly what he’s going to spend his money on at every turn, and
exactly when he’s going to attack. Knowing this, you’ve decided that the best
strategy is to play defensively – you just want to survive every attack, and amass
as large an army in the meantime so you can counterattack (and hopefully win)
at the end of the game.

What’s the largest army you can have at the end of the game, given that you
must survive all your friend’s attacks?

The University of Chicago Invitational Programming Contest 2012

 Page 3 of 14 15 April 2012

Input

There will be several test cases in the input. Each test case will begin with a line
with three integers:

n k t

where n (1≤n≤100) is the number of workers you start with, k (1≤k≤100) is the
number of production facilities you have at the start, and t (1≤t≤10,000) is the
number of turns. On the next line will be t-1 integers, ai (0≤ai≤Max signed 64-bit
integer), separated by single spaces. The ith integer indicates the strength of the
attack (that is, the number of army units your opponent is using in that attack) on
turn i. The input will end with a line with three 0s.

Output

For each test case output a single integer indicating the maximum number of
armies you could have at the end of the game. Output -1 if it is impossible to
survive. Output each integer on its own line, with no spaces, and do not print any
blank lines between answers. While it is possible for some inputs to generate
unreasonably large answers, all judge inputs yield answers which will fit in a
signed 64-bit integer.

Sample Input

8 4 6

22 6 10 14 0

4 3 3

0 0

6 9 7

0 0 11 0 7 0

0 0 0

Sample Output

-1

11

101

The University of Chicago Invitational Programming Contest 2012

 Page 4 of 14 15 April 2012

B: Covered Walkway
Your university wants to build a new walkway, and they want at least part of it to
be covered. There are certain points which must be covered. It doesn’t matter if
other points along the walkway are covered or not.

The building contractor has an interesting pricing scheme. To cover the walkway
from a point at x to a point at y, they will charge c+(x-y)2, where c is a constant.
Note that it is possible for x=y. If so, then the contractor would simply charge c.

Given the points along the walkway and the constant c, what is the minimum cost
to cover the walkway?

Input

There will be several test cases in the input. Each test case will begin with a line
with two integers, n (1≤n≤1,000,000) and c (1≤c≤109), where n is the number of
points which must be covered, and c is the contractor’s constant. Each of the
following n lines will contain a single integer, representing a point along the
walkway that must be covered. The points will be in order, from smallest to
largest. All of the points will be in the range from 1 to 109, inclusive. The input will
end with a line with two 0s.

Output

For each test case, output a single integer, representing the minimum cost to
cover all of the specified points. Output each integer on its own line, with no
spaces, and do not print any blank lines between answers. All possible inputs
yield answers which will fit in a signed 64-bit integer.

Sample Input

10 5000

1

23

45

67

101

124

560

789

990

1019

0 0

Sample Output

30726

The University of Chicago Invitational Programming Contest 2012

 Page 5 of 14 15 April 2012

C: Double Dealing
Take a deck of n unique cards. Deal the entire deck out to k players in the usual
way: the top card to player 1, the next to player 2, the kth to player k, the k+1st to
player 1, and so on. Then pick up the cards – place player 1′s cards on top, then
player 2, and so on, so that player k’s cards are on the bottom. Each player’s
cards are in reverse order – the last card that they were dealt is on the top, and
the first on the bottom.

How many times, including the first, must this process be repeated before the
deck is back in its original order?

The Input

There will be multiple test cases in the input. Each case will consist of a single
line with two integers, n and k (1≤n≤800, 1≤k≤800). The input will end with a line
with two 0s.

The Output

For each test case in the input, print a single integer, indicating the number of
deals required to return the deck to its original order. Output each integer on its
own line, with no extra spaces, and no blank lines between answers. All possible
inputs yield answers which will fit in a signed 64-bit integer.

Sample Input

1 3

10 3

52 4

0 0

Sample Output

1

4

13

The University of Chicago Invitational Programming Contest 2012

 Page 6 of 14 15 April 2012

D: The End of the World
Legend says that there is a group of monks who are solving a large Towers of
Hanoi puzzle. The Towers of Hanoi is a well-known puzzle, consisting of three
pegs, with a stack of disks, each a different size. At the start, all of the disks are
stacked on one of the pegs, and ordered from largest (on the bottom) to smallest
(on the top). The object is to move this stack of disks to another peg, subject to
two rules: 1) you can only move one disk at a time, and 2) you cannot move a
disk onto a peg if that peg already has a smaller disk on it.

The monks believe that when they finish, the world will end. Suppose you know
how far they’ve gotten. Assuming that the monks are pursuing the most efficient
solution, how much time does the world have left?

Input

There will be several test cases in the input. Each test case will consist of a string
of length 1 to 63, on a single line. This string will contain only (capital) As, Bs and
Cs. The length of the string indicates the number of disks, and each character
indicates the position of one disk. The first character tells the position of the
smallest disk, the second character tells the position of the second smallest disk,
and so on, until the last character, which tells the position of the largest disk. The
character will be A, B or C, indicating which peg the disk is currently on. You may
assume that the monks’ overall goal is to move the disks from peg A to peg B,
and that the input represents a legitimate position in the optimal solution. The
input will end with a line with a single capital X.

Output

For each test case, print a single number on its own line indicating the number of
moves remaining until the given Towers of Hanoi problem is solved. Output no
extra spaces, and do not separate answers with blank lines. All possible inputs
yield answers which will fit in a signed 64-bit integer.

Sample Input

AAA

BBB

X

Sample Output

7

0

The University of Chicago Invitational Programming Contest 2012

 Page 7 of 14 15 April 2012

E: Estimation
“There are too many numbers here!” your boss bellows. “How am I supposed to
make sense of all of this? Pare it down! Estimate!”

You are disappointed. It took a lot of work to generate those numbers. But, you’ll
do what your boss asks.

You decide to estimate in the following way: You have an array A of numbers.
You will partition it into k contiguous sections, which won’t necessarily be of the
same size. Then, you’ll use a single number to estimate an entire section. In
other words, for your array A of size n, you want to create another array B of size
n, which has k contiguous sections. If i and j are in the same section, then
B[i]=B[j]. You want to minimize the error, expressed as the sum of the absolute
values of the differences (∑|A[i]-B[i]|).

Input

There will be several test cases in the input. Each test case will begin with two
integers on a line, n (1≤n≤2,000) and k (1≤k≤25, k≤n), where n is the size of the
array, and k is the number of contiguous sections to use in estimation. The array
A will be on the next n lines, one integer per line. Each integer element of A will
be in the range from -10,000 to 10,000, inclusive. The input will end with a line
with two 0s.

Output

For each test case, output a single integer on its own line, which is the minimum
error you can achieve. Output no extra spaces, and do not separate answers
with blank lines. All possible inputs yield answers which will fit in a signed 64-bit
integer.

Sample Input

7 2

6

5

4

3

2

1

7

0 0

Sample Output

9

The University of Chicago Invitational Programming Contest 2012

 Page 8 of 14 15 April 2012

F: Juggler
As part of my magical juggling act, I am currently juggling a number of objects in
a circular path with one hand. However, as my rather elaborate act ends, I wish
to drop all of the objects in a specific order, in a minimal amount of time. On each
move, I can either rotate all of the objects counterclockwise by one, clockwise by
one, or drop the object currently in my hand. If I drop the object currently in my
hand, the next object (clockwise) will fall into my hand. What’s the minimum
number of moves it takes to drop all of the balls I’m juggling?

Input

There will be several test cases in the input. Each test case begins with an
integer n, (1≤n≤100,000) on its own line, indicating the total number of balls
begin juggled. Each of the next n lines consists of a single integer, ki (1≤ki≤n),
which describes a single ball: i is the position of the ball starting clockwise from
the juggler’s hand, and ki is the order in which the ball should be dropped. The
set of numbers {k1, k2, …, kn} is guaranteed to be a permutation of the numbers
1..n. The input will terminate with a line containing a single 0.

Output

For each test case, output a single integer on its own line, indicating the
minimum number of moves I need to drop all of the balls in the desired order.
Output no extra spaces, and do not separate answers with blank lines. All
possible inputs yield answers which will fit in a signed 64-bit integer.

Sample Input

3

3

2

1

0

Sample Output

5

Explanation of the sample input: The first ball is in the juggler’s hand and should
be dropped third; the second ball is immediately clockwise from the first ball and
should be dropped second; the third ball is immediately clockwise from the
second ball and should be dropped last.

The University of Chicago Invitational Programming Contest 2012

 Page 9 of 14 15 April 2012

G: Red/Blue Spanning Tree
Given an undirected, unweighted, connected graph, where each edge is colored
either blue or red, determine whether a spanning tree with exactly k blue edges
exists.

Input

There will be several test cases in the input. Each test case will begin with a line
with three integers:

n m k

Where n (2≤n≤1,000) is the number of nodes in the graph, m (limited by the
structure of the graph) is the number of edges in the graph, and k (0≤k<n) is the
number of blue edges desired in the spanning tree.

Each of the next m lines will contain three elements, describing the edges:

c f t

Where c is a character, either capital ‘R’ or capital ‘B’, indicating the color of the

edge, and f and t are integers (1≤f,t≤n, t≠f) indicating the nodes that edge goes
from and to. The graph is guaranteed to be connected, and there is guaranteed
to be at most one edge between any pair of nodes.

The input will end with a line with three 0s.

Output

For each test case, output single line, containing 1 if it is possible to build a
spanning tree with exactly k blue edges, and 0 if it is not possible. Output no
extra spaces, and do not separate answers with blank lines.

Sample Input

3 3 2

B 1 2

B 2 3

R 3 1

2 1 1

R 1 2

0 0 0

Sample Output

1

0

The University of Chicago Invitational Programming Contest 2012

 Page 10 of 14 15 April 2012

H: The Red Gem
In circle land, in the museum of circles, a grand red circular gem is on display.

The curator has decided to spice up the
display, and has placed the gem on a
purple circular platform, along with
mundane orange circular gems.

Starved citizens of circle land (points) have
flocked to see the grand exhibit of the
exquisite red gem. They cannot step on the
purple exhibit floor, but can only stand on
the circumference. Unfortunately, the
mundane orange gems block the view of
the exquisite red gem. Please help the
museum folks determine the proportion of
the circumference of the purple platform
from which all of the red gem is visible,
completely unobstructed by the orange
gems.

Input

There will be several test cases in the input. Each test case will begin with a line
with five integers:

n p x y r

Where n (1≤n≤100) is the number of orange circles, p (10≤p≤1,000) is the radius
of the purple platform, (x,y) is the center of the red gem relative to the center of
the purple platform (-1,000≤x,y≤1000), and r (0<r≤1000) is the radius of the red
gem. The red gem is guaranteed to lie fully on the purple platform. No part of the
red gem will extend past the purple platform.

On each of the next n lines will be three integers:

x y r

which represent the (x,y) center (-1,000≤x,y≤1000) relative to the center of the
purple platform, and radius r (0<r≤1000) of each orange gem. As with the red
gem, each orange gem is guaranteed to lie entirely on the purple platform. The
orange gems will not overlap the red gem, and they will not overlap each other.
The input will end with a line with 5 0s.

The University of Chicago Invitational Programming Contest 2012

 Page 11 of 14 15 April 2012

Output

For each test case, output a single floating point number on its own line,
indicating the proportion of the perimeter of the purple platform where all of the
red gem is visible. This result should be between 0 and 1 (inclusive). Output this
number with exactly 4 decimal places of accuracy, with standard 5 up / 4 down
rounding (e.g. 2.12344 rounds to 2.1234, 2.12345 rounds to 2.1235). Output
each number on its own line, with no spaces, and do not print any blank lines
between answers.

Sample Input

4 10 0 0 1

5 0 2

0 5 2

-5 0 2

0 -5 2

0 0 0 0 0

Sample Output

0.3082

The University of Chicago Invitational Programming Contest 2012

 Page 12 of 14 15 April 2012

I: Science!
Welcome, ladies and gentlemen, to Aperture Science. Astronauts, War Heroes,
Olympians — you’re here because we want the best, and you are it. That said,
it’s time to make some science.

Now, I want each of you to stand on one of these buttons. Well done, we’re
making great progress here. Now let’s do it again. Oh, come on - don’t stand on
the same button! Move, people! No, no, that button’s only for the Astronauts, you
know who you are. What?! You say you can’t do everything I ask? Ok let’s start
over. You there, the Programmer, figure out how many times we can do this. And
make it quick, we have a lot more science to get through…

Input

There will be several test cases in the input. The first line of each case
will contain n (2≤n≤80) giving the number of people (and the number of buttons)
in the experiment. The next n lines will contain n characters each. If the jth
character of the ith line is Y it indicates that the ith person can stand on the jth

button (it is N otherwise). The last line of input will be a 0.

Output

For each test case, output k, the maximum number of times everyone can be
standing on buttons such that nobody stands on the same button more than once
(This might be 0). After that, output k lines. Each line should contain n integers
separated by single spaces, where the ith integer describes which person is
standing on the ith button. All of the lines should be valid and none of them
should put the same person on the same button as a previous line of the same
test case. Output no extra spaces, and do not separate answers with blank lines.
Note that correct outputs might not be unique.

Sample Input

3

YYY

NYY

YNY

2

YN

YN

0

Sample Output

2

3 1 2

1 2 3

0

The University of Chicago Invitational Programming Contest 2012

 Page 13 of 14 15 April 2012

J: The Worm in the Apple
Willy the Worm was living happily in an apple – until some vile human picked the
apple, and started to eat it! Now, Willy must escape!

Given a description of the apple (defined as a convex shape in 3D space), and a
list of possible positions in the apple for Willy (defined as 3D points), determine
the minimum distance Willy must travel to get to the surface of the apple from
each point.

Input

There will be several test cases in the input. Each test case will begin with a line
with a single integer n (4≤n≤1,000), which tells the number of points describing
the apple.

On the next n lines will be three integers x, y and z (-10,000≤x,y,z≤10,000),
where each point (x,y,z) is either on the surface of, or within, the apple. The
apple is the convex hull of these points. No four points will be coplanar.

Following the description of the apple, there will be a line with a single integer q
(1≤q≤100,000), which is the number of queries – that is, the number of points
where Willy might be inside the apple. Each of the following q lines will contain
three integers x, y and z (-10,000≤x,y,z≤10,000), representing a point (x,y,z)
where Willy might be. All of Willy’s points are guaranteed to be inside the apple.
The input will end with a line with a single 0.

Output

For each query, output a single floating point number, indicating the minimum
distance Willy must travel to exit the apple. Output this number with exactly 4
decimal places of accuracy, using standard 5 up / 4 down rounding (e.g. 2.12344
rounds to 2.1234, 2.12345 rounds to 2.1235). Output each number on its own
line, with no spaces, and do not print any blank lines between answers.

The University of Chicago Invitational Programming Contest 2012

 Page 14 of 14 15 April 2012

Sample Input

6

0 0 0

100 0 0

0 100 0

0 0 100

20 20 20

30 20 10

4

1 1 1

30 30 35

7 8 9

90 2 2

0

Sample Output

1.0000

2.8868

7.0000

2.0000

