Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem L

くしゃ 本面 そうせん ほう うめんろ

Day 1: Problem Analysis Version 0.9: All problems except for D and G

Maxim Buzdalov

April 14, 2015

Preliminaries

- Contest origin Norwegian Collegiate Programming contest
 - NCPC 2005: B, C, F, G \rightarrow A, B, C, D
 - NCPC 2006: A, B, D, F, G \rightarrow E, F, G, H, I
 - NCPC 2007: D, E, F ightarrow J, K, L
 - hardest problems from each set

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem L

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ●

Problem A. Funny Games

Statement

- Planet of initial size X
- K weapons, *i*-th reduces the planet by a factor of F_i
- Two players make moves (applying a weapon) in turns
- ▶ Who made the planet less than 1, wins

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem A. Solution

Solution idea

- This is a game on a graph
- Vertices = sizes \rightarrow exponential size, TL
- Vertices = size intervals!
 - winning/losing intervals
 - a point from a winning interval = a winning point

Maxim Buzdalov

Preliminaries

Problem A

Problem B

- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem A. Implementation

My implementation

- Construct intervals from 1 above
 - the first winning interval: $(1; \frac{1}{F_{\min}})$
- Consider them as a collection of winning intervals
 - overlapping winning intervals can be united
- When a winning interval ends
 - if a losing interval starts (at t), add beginnings of winning intervals: t Ei
- When a winning interval begins
 - if a losing interval ends, add endings of winning intervals

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem A. Implementation

Further details

- A priority queue to store interval beginnings and endings
- Running time: O(Z log Z) where Z is the number of intervals
- What is the bound on Z?
 - I don't know :(
 - Somehow connected with X, maximum $F_i \leq 0.9$ and K

くしゃ 本面 そうせん ほう うめんろ

Maxim Buzdalov

Preliminaries

Problem A

- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem B. Nullary Computer

Statement

- Given a computer with 26 registers and simplistic instructions
- Sort first 24 registers
- Size limit: 5432 instructions

Solution

- A comparator for a and b: a(Yb(Z)a)z(Az)y(By)
- ▶ Bubble sort network: n(n − 1)/2 comparators, size 5244

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem C. Worst Weather Ever

Day 1: Problem

Analysis Maxim Buzdalov

Problem C

Statement

- Data: in year Y_i it was R_i mm of rain
- Queries: does year X have the most rain since year Y?
 - $R(Y) \geq R(X)$
 - if Y < Z < X then R(Z) < R(X)

くしゃ 本面 そうせん ほう うめんろ

Answers: true, false, maybe

Problem C. Solution

My (plain) segment tree solution

- Segment tree for maximum only on known years
- (X, Y) query processing:
 - Find closest known years:
 - $Y_i \leftarrow$ upper bound for Y
 - $X_i \leftarrow$ lower bound for X
 - Get a maximum from a segment tree (without X and Y)
 - Check the statements
 - all years are known: $X Y = X_i Y_i$

くしゃ 本面 そうせん ほう うめんろ

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem D. Kingdom

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C

Problem D

- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem E. Shoot-out

Statement

- N cowboys, *i*-th shoots dead with probability P_i
- Shoot in turn using optimal strategies until only one remains
- What are the probabilities of remaining the only one?

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem L

Problem E. Solution

Solution

- Dynamic programming: A(M, i, j) is the probability of the cowboy j to remain if there is a set of M living cowboys and the cowboy i shoots now
- A(M, _, j) have a circular dependency loop (i.e. all cowboys may miss), so should be evaluated at once
- Complexity: $O(2^N \cdot N^3)$

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem F. Tour Guide

Statement

- N oldies each move along a straight line
- You need to run onto each of them and motivate to go to (0,0)
- Minimize the time when everyone is at (0,0)

Solution

- ► Test all N! permutations
- Act greedily

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem G. Jezzball

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F

Problem G

- **Problem H**
- Problem I
- Problem J
- Problem K
- Problem L

・ロト ・雪ト ・雪ト ・雪ト ・白ト

Problem H. Traveling Salesman

Statement

- Countries: broken closed polylines in space
- Some countries have common borders (polyline segments)
- Find minimum number of border crossings to get from country A to country B

Solution

- Build a graph (vertices = countries, edges = common borders)
- Find a path length (BFS)

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem I. Whac-a-Mole

Statement

- $N \times N$ field with moles appearing
- Hammer moves: straight line movements from integer point to integer point
- Maximize number of whacked moles

Solution

- Dynamic programming: A(x, y, t) is the answer at the end of t when finishing at (x, y)
- Can get outside of $[0; N 1] \times [0; N 1]!$

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem J. Copying DNA

Statement

- Source DNA string S
- Target DNA string T
- Operations
 - get substring from S, optionally reverse, stick into T
 - get substring from partially built *T*, optionally reverse, stick into *T*
- Find minimum number of operations to build T

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

^oroblem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem J. Solution

My solution

- Precompute P(s, t)
 - if T[s, t] is as a (reversed) substring of S
- Precompute $Q(s_1, s_2, l)$
 - if $T[s_1, s_1 + l]$ is the (reversed) same as $T[s_2, s_2 + l]$
- Dynamic programming: A(M) the minimum number of operations to construct a subset M of positions from T
 - test all U = [s, t] such that $M \cap U = \emptyset$
 - find using P and Q if you can construct U

Maxim Buzdalov

Preliminaries

^Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem K. Circle of Debt

Statement

- A, B, C owes some money to each other
- Each of them has money units of nominations: 100, 50, 20, 10, 5, 1
- Find minimum number of money unit movements to clear debts

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K
- Problem L

Problem K. Solution

Idea

• For each nomination, possible movements are $(X \to Y)$; $(X \to Y, Z)$; $(X, Y \to Z)$

Solution

- Dynamic programming: D(x, y, k) is the minimum number of moves to achieve x money for A and y money for B after exchange of k smallest nominations
- Almost all nominations are multiples of each other. Don't check all x, y!

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem L. Full Tank?

Statement

- Graph: vertices are fuel stations with price
 p_i per unit, edges are roads where you
 spend *d_i* units of fuel
- ▶ Find the cheapest way to get from A to B

Solution

- Author solution: Dijkstra with heap on implicit graph
 - If one quits Dijkstra when target is hit first: 0.4 seconds
 - Otherwise, 2.8 seconds

Day 1: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K