Day 5: Problem Analysis

Maxim Buzdalov

April 19, 2015

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

ション ふゆ ア キョン キョン ヨー もくの

Preliminaries

- Various hard problems from different contests
 - $\begin{array}{rcl} \mathsf{A-C} & \leftarrow & \mathsf{Guangzhou} \ 2003 \\ \mathsf{D-G} & \leftarrow & \mathsf{Shanghai} \ 2004 \\ \mathsf{H} & \leftarrow & \mathsf{Phuket} \ 2009 \\ \mathsf{I}, \ \mathsf{J} & \leftarrow & \mathsf{MCPC} \ 2008 \\ \mathsf{K} & \leftarrow & \mathsf{Dhaka} \ 2002 \end{array}$
- Time limits for most problems were tightened

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

Problem A. Elevator Stopping Plan

Statement

- People want to get to their floors as soon as possible
- There is an elevator
 - speed: 4 seconds / floor
 - unloading: 10 seconds
 - by foot: 20 seconds / floor
- Given needed floors, construct the optimal stopping points

くしゃ 本面 そうせん ほう うめんろ

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem A. Observations

Troubles

- If you think you need to stop only on input floors, you are in trouble
 - 8 2 4 6 8 10 12 14 16
 - Optimal answer 80: 3 8 13 16
 - You would find 90: 4 8 12 14 16

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

Problem A. Solution

Dynamic programming

- A(f, t) what is the maximum time for people aiming at floors ≤ t, if we stop at f floors and t is the last one
- Convenient thing: from f and t you can restore the elevator stopping time at floor t
- Recomputation:
 - consider all next stopping floors t'
 - find the maximum for people from (t, t')
 - ▶ update A(f + 1, t')

At the end: count everyone > t as well

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

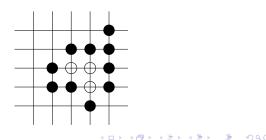
Problem D

Problem E

Problem F

Problem G

Problem H


Problem I

Problem J

Problem B. New Go Game

Statement

- A field with stones
- Known only the numbers of stones for rows, columns, diagonals
- Output the number of enclosed intersections

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

- Problem C
- Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem B. Solution

- ▶ Brute force: for each cell try 1 then 0
- Evident heuristics:
 - track how many zeros and ones remain at each row, column, diagonal
 - if 1 or 0 are impossible, don't try them
- That's still TLE
- Non-evident heuristics (both AC):
 - ITMO 1: choose a cell from row/column/diagonal with smallest number of choices (binomal quotient)
 - my: first, test if there are cells with at most one way to fill

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem B. Reflections

- We don't have proofs that our solutions really work fast for every possible test case
 - Probably, they can be challenged
 - Probably, the tests are weak
- I am unaware of a "normal" solution with predictable behavior

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem C. Outernet

Statement

- Description of interaction protocol for application proxies
- Given routing table and requests, output what should the application proxy say

Solution

- Implement the protocol carefully
 - Maintain computer names for input and output ports
 - Close sessions timely
 - Don't unescape escape characters
 - <u>۱</u>

Day 5: Problem

Analysis Maxim Buzdalov

Problem C

Problem D. Amphiphilic Carbon Molecules

Statement

- Given black or white points on a plane
- Separate them by a line so that number of black points on one side plus the number of white points on other side is maximum possible

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem D. Solution

Idea

The line always passes through at least two points!

Implementation

- Fix one point at time
- Sort other points around it
- Linear scan for maximum answer
- Complexity: O(N² log N)

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem E. Different Digits

Statement

- Given an integer X ($1 \le X \le 65535$)
- Find a minimum Y such that X · Y contains minimum possible number of different digits

Solution idea

 The minimum number of different digits is always 1 or 2

くしゃ 本面 そうせん ほう うめんろ

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

Problem E. Solution

Check if one digit (D) is possible

- Track remainders of D, DD, DDD mod X
 - either hits 0 or enters a loop

For two digits $D_1 < D_2$

- Graph: vertices = remainders mod X
- Edges: appending digits
- BFS: first use D_1 , then use D_2
 - first hit of 0 is lex-smallest
 - don't use $D_1 = 0$ in the beginning

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem F. The Floor Bricks

Statement

- Given several Tetris-like pieces (fit in 3×3)
- Each has a price
- Fill a given region with these pieces in a cheapest way

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem F. The Floor Bricks

Statement

- Given several Tetris-like pieces (fit in 3×3)
- Each has a price
- Fill a given region with these pieces in a cheapest way

Key insight

- Max region height: 5 (look up the statement)
- Dynamic programming is possible

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

roblem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem F Solution

- Track the current three columns of region
 - at most $3 \times 5 = 15$ bits
- Try fitting all figures and advancing
- Convenient bit representation (for me):

- bit packing for current region:
- advantage: after insertion of a figure, the integer value increases
- When the first column is filled, advance one step right

	14	9	4			
	13	8	3			
	12	7	2			
	11	6	1			
	10	5	0			
<u>('</u> , j						

Day 5: Problem Analysis

Maxim Buzdalov

Problem F

Problem G. The Rotation Game

Statement

- Make colored cells contain equal numbers
- Operations: vertical/horizontal band rotation

		1		1		
		1		1		
3	2	3	2	3	1	2
		2		2		
3	1	2	2	2	3	1
		2		1		
		3		3		

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Problem G. Solution

Key idea

- Total states: $\binom{24}{8} \cdot \binom{16}{8} = 9465511770$
- Total states with two types merged: $\binom{24}{8} = 735471$
- Test values to be in the middle separately

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

- Problem A
- Problem B
- Problem C
- Problem D
- Problem E
- Problem F
- Problem G
- Problem H
- Problem I
- Problem J
- Problem K

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ●

Problem G. Solution

Key idea

- Total states: $\binom{24}{8} \cdot \binom{16}{8} = 9465511770$
- Total states with two types merged: $\binom{24}{8} = 735471$
- Test values to be in the middle separately

Solution

- Construct the graph once
- ► For each test case, check all values
- Lex smallest shortest path using the graph

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem H. Hexagonal Sticks

Statement

- Given hex field and sticks connecting centers of adjacent cells
- Some obstacles on the field
- Make a hexagon from sticks in min moves

Solution

- Only 6-stick hexagons are possible
- Shortest paths in stick location graphs
- For each hexagon center, find minimum matching, the best minimum is the answer

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem I. Hex Tile Equations

Statement

- At most 14 hexagon cells with digits and operators
- Find a hamiltonian path which generates a valid expression

Solution

- Not many valid paths, roughly at most: $min(6 \cdot 2^4 \cdot 5^8, 3 \cdot 2^3 \cdot 5^9) = 3.75 \cdot 10^7$
- Check them all and find the answer

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem J. Line & Circle Maze

Statement

- Intersecting line segments and circles
- Find longest non-infinite path

Solution

- Find all intersection points
- Join them in a graph
- Floyd-Warshall
- Find maximum non-infinite number

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem J. Geometry Concerns

- Segment vs Segment
 - $S_{x}^{1} + t \cdot (T_{x}^{1} S_{x}^{1}) = S_{x}^{2} + u \cdot (T_{x}^{2} S_{x}^{2})$ • $S_{v}^{1} + t \cdot (T_{v}^{1} - S_{v}^{1}) = S_{v}^{2} + u \cdot (T_{v}^{2} - S_{v}^{2})$
 - Solve for t and u, check for $\in [0; 1]$
- Segment vs Circle
 - ► S, T: endpoints, C: circle center, r: radius

•
$$(S + t \cdot (T - S) - C)^2 = r^2$$

- Solve guadratic equation on t
- Check solutions for \in [0; 1]
- Circle vs Circle
 - Subtract circle equations, get a line equation
 - Call previous subroutine (no [0; 1] check!)

Day 5: Problem Analysis

Maxim Buzdalov

Problem I

Problem K. Enigmatic Travel

Statement

- Full graph with N vertices
- All journeys with length $\leq N$ considered
 - each journey is equiprobable
- Find expected lengths
 - in general case
 - if a journey is a simple path
 - if a journey is a simple cycle

Day 5: Problem Analysis

Maxim Buzdalov

Preliminaries

Problem A

Problem B

Problem C

Problem D

Problem E

Problem F

Problem G

Problem H

Problem I

Problem J

Problem K

Problem K Solution Expectation: $E = \frac{\sum_{L} L \cdot f(L)}{\sum_{L} f(L)}$, where f(L) – number of journeys of length L 1. General case: For length $L \ge 1$: $(N-1)^{L-1}$ journeys each move except for the last one is to a vertex different to the current one 2. Simple path case: • For length $L \ge 1$: $\frac{(N-2)!}{(N-l-1)!}$ choose a vertex subset to use choose an order of visiting 3. Simple cycle case:

• For length $L \ge 3$: $\frac{(N-1)!}{(N-L)!}$

Day 5: Problem

Analysis Maxim Buzdalov