Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Open questions

Non-Dominated Sorting

Maxim Buzdalov

ITMO University

April 15, 2015

くりゃく 前・ 本田・ 本田・ オロ・

Preface

If you were me, what option do you prefer to get from home to university?

- 1. By foot: 0 roubles, pprox 9 hours
- 2. By car: \approx 100 roubles, [1; 1.5] hours depending on traffic
- 3. By train: \approx 2h 10m, 110 roubles
- 4. By train and subway: pprox 2h, 90 roubles

くしゃ 本面 そうせん ほう うらう

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Preface

If you were me, what option do you prefer to get from home to university?

- 1. By foot: 0 roubles, pprox 9 hours
- 2. By car: \approx 100 roubles, [1; 1.5] hours depending on traffic
- 3. By train: \approx 2h 10m, 110 roubles
- 4. By train and subway: pprox 2h, 90 roubles

Definitely not #3!

Non-Dominated Sorting

Maxim Buzdalov

lon-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Pareto-optimality

- We are solving optimization problem
 - Assume there are K criteria which are equally important
 - We want to minimize each of them, but they depend on each other
- Solutions:
 - $P = (P_1, P_2, ..., P_K)$ • $Q = (Q_1, Q_2, ..., Q_K)$
- $P \prec Q$ (*P* dominates *Q*) iff:
 - $\blacktriangleright \quad \forall i, 1 \leq i \leq K : P_i \leq Q_i$
 - $\bullet \ \exists i, 1 \leq i \leq K : P_i < Q_i$
- What to do if there are 1 000 000 solutions?

Non-Dominated Sorting

Maxim Buzdalov

lon-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Plan

Non-dominated sorting: what is it?

Offline algorithm History Algorithm Analysis

Online algorithm Algorithm Analysis

Open questions

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Open questions

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

Randomized search heuristics

- Sometimes the (optimization) problem is too hard to solve exactly
 - ightarrow > 99% of problems from real world
- Sometimes it's hard to solve a problem good enough
 - simple/complex heuristics don't wish to work
- What to do?
 - one way: look how existing optimizers work and do the same
 - randomness is a good way to overcome the curse of the human factor
 - randomized search heuristics

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Randomized search heuristics: what are they?

- Natural evolution: an optimizer which produced all living forms
 - genetic algorithms
 - evolution strategies
- "Swarm intelligence"
 - ant colony optimization
 - particle swarm optimization
 - "cuckoo search" and the other "zoological" algorithms
- Physics
 - simulated annealing
 - "intelligent water drops"

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Randomized search heuristics: Principles

- It is hard to solve the problem, but it is often much easier to estimate the quality of a solution
 - compare P and NP problem classes
 - at least it is easy to tell if A is better than B
- It is not very complex to make small and large changes to solutions
 - and do it in randomized ways
- Motto: "change solutions until they are good enough"

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithr Algorithm Analysis

What to do with multiple objectives?

- Multi-objective optimization
 - it's generally impossible to find a single "best" solution
 - need to sample many enough Pareto-optimal solutions
- Most randomized search heuristics are designed to optimize only one objective

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

What to do with multiple objectives?

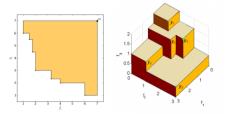
- First idea: Reduce the multiple objective problem to a single objective problem
- Early years:
 - weighed sum: optimize $\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_k X_K$
 - lexicographic comparison: first compare X₁s then X₂s then ...
 - suffer from small diversity and sensitivity to scale/order

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm


History Algorithm Analysis

Online algorithm

Algorithm Analysis

What to do with multiple objectives?

- Hypervolume indicator
 - The total volume of solutions which are dominated by the current solution set
 - Reflects both quality and diversity
 - O(N log N) in the two-dimensional case, NP-hard in general

Picture source: Dortmund University

・ロト ・ 一日 ・ ・ 日 ト ・ 日 ト ・ 日

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Pareto-oriented algorithms

- Some algorithms work with Pareto-optimal solutions only
 - given: a set of solutions S
 - returns: a subset of solutions P ⊂ S which are not dominated by any solution from S
- Some algorithms want to know some information about non-optimal solutions as well
 - reason 1: information theory. By ignoring non-optimal solutions one gets less information per query
 - reason 2: good solutions can be constructed by recombination of not-so-good solutions

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithn Algorithm

Analysis

Non-dominated sorting

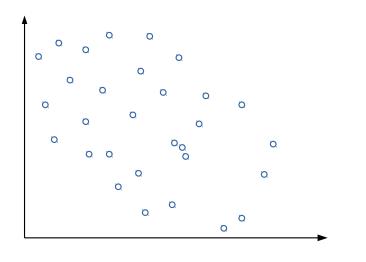
. . .

- Rank 0: those who are not dominated by any solution
- Rank 1: those who are not dominated by any solution except if rank = 0
- Rank 2: those who are not dominated by any solution except if rank ≤ 1

くしゃ 本面 そうせん ほう うめんろ

Non-Dominated Sorting

Maxim Buzdalov


Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorith Algorithm Analysis

Non-dominated sorting

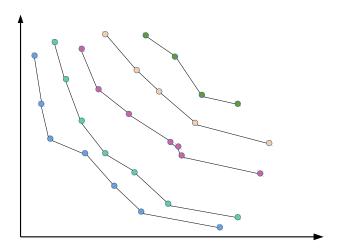
Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis


Online algorithm

Algorithm Analysis

Open questions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Non-dominated sorting

Non-Dominated Sorting

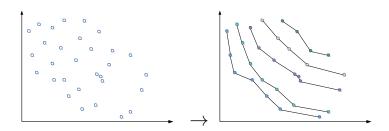
Maxim Buzdalov

Non-dominated sorting: what is it?

Offline algorithm

History Algorithm Analysis

Online algorithm


Algorithm Analysis

Open questions

・ロト ・日・ ・日・ ・日・ ・日・

Part 1. Offline algorithm

- (From now on: solutions \rightarrow points)
- Given N points, each of dimension K
- For each point, determine its rank

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Open questions

・ロト ・母 ト ・ヨ ト ・ヨ ・ うへぐ

Some history

- ▶ 1975: Kung et al.
 - Finding rank-0 in $O(N \log^{K-1} N)$
- ▶ 2001: Deb et al. (part of NSGA-II)
 - Running time: $\Theta(N^2K)$
- ▶ 2003: M. Jensen
 - $O(N \log^{K-1} N)$
 - No two objective values may coincide
- ▶ 2013 (!): Fortin et al.
 - Works in all cases
 - $O(N \log^{K-1} N)$ in average, $O(N^2 K)$ proven
- 2014: M. Buzdalov
 - $O(N \log^{K-1} N)$ in all cases

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorith Algorithm Analysis

Divide-and-conquer approach

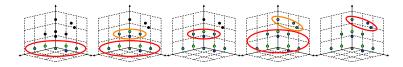
- S: points, $K \ge 3$: dimension
- If |S| = 2, just compare points
- Find a median *M* of the *K*-th objective over *S*
- $S = S_L \cup S_M \cup S_H$, where
 - S_L : points with $X_K < M$
 - S_M : points with $X_K = M$
 - S_H : points with $X_K > M$
- No point from S_M dominates any point from S_L
 - thus ranks of S_L don't depend on S_M
 - S_M , however, depends on S_L

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated sorting: what is t?

Offline algorithm


History

Algorithm Analysis

Online algorithm Algorithm Analysis

Divide-and-conquer approach

- IdeaA(S, K):
 - $S = S_L \cup S_M \cup S_H$
 - IdeaA(S_L , K)
 - Update ranks of S_M using S_L
 - IdeaA(S_M , K 1)
 - Update ranks of S_H using $S_L \cup S_M$
 - ► IdeaA(S_H, K)
- Both "update ranks" need K 1 objectives

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated orting: what is t?

Offline algorithm

History Algorithm

Analysis

Online algorithm Algorithm Analysis

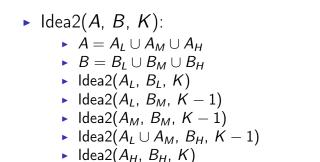
Open questions

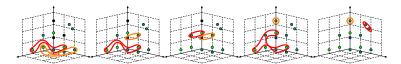
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

How to update ranks of B using A?

- Consider again $K \ge 3$
- Ranks of A are final
- $a \in A$ dominates $b \in B$ in objectives > K
- If |A| = 1 or |B| = 1, do full comparison
- ► Find a median *M* of *K*-th objective of *A* ∪ *B*
- $\bullet \ A = A_L \cup A_M \cup A_H$
- $\bullet \ B = B_L \cup B_M \cup B_H$
- No need to:
 - update ranks of B_L using A_M or A_H
 - update ranks of B_M using A_H

Non-Dominated


Sorting Maxim Buzdalov


History

Algorithm Analysis

Algorithm Analysis

Divide-and-conquer: again!

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated orting: what is t?

Offline algorithm

History Algorithm

Analysis

Online algorithm Algorithm Analysis

Open questions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Running time estimation

- Base cases: K = 2
 - Implemented using a sweep-line approach
 - Idea1(N, 2) $\rightarrow O(N \log N)$
 - Idea2(A, B, 2) $\rightarrow O((A+B)\log A)$
- Hypothesis
 - $T_{\text{Idea2}}(A, B, K) = O((A+B)\log^{K-1}(A+B))$
 - $T_{\text{Idea1}}(N, K) = O(N \log^{K-1} N)$
- Inductive proof

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm Algorithm Analysis

Part 2. Online algorithm

- A set of points *S* which support queries:
 - Add a point P to S
 - Find the rank of a point P if it is inserted
 - Get a random point from S with its rank
 - Delete a point with the worst rank

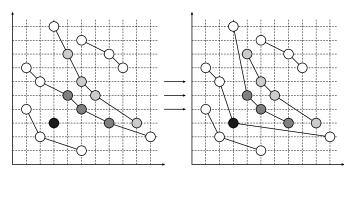
• Straightforward: use $O(N \log^{K-1} N)$ algo

- Add: $O(N \log^{K-1} N)$
- ► Find: *O*(*N*)
- ▶ Get: *O*(1)
- Delete: O(1)
- ENLU approach (Deb et al, 2014): $O(N\sqrt{NK})$ in average, $O(N^2K)$ worst
- How to be faster?

Maxim Buzdalov

Non-dominated corting: what is t?

Offline algorithm


History Algorithm Analysis

Online algorithm

Algorithm Analysis

Incremental approach

- Layer: a set of points with the same rank
- Idea: during addition layers exchange a small number of contiguous fragments

Non-Dominated Sorting

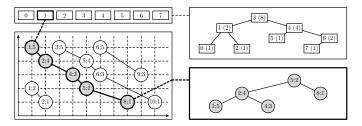
Maxim Buzdalov

Von-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm


Algorithm Analysis

Open questions

うせん 同 (山田) (田) (日) (日)

Data structure: Tree of trees

- Right now we have an algorithm for K = 2 only
- The high-level tree: nodes are layers as low-level trees
- A lower-level tree: nodes are points from a layer

Non-Dominated Sorting

Maxim Buzdalov

lon-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis

Open questions

・ロット (四) (川田) (日) (日) (日)

Runtime analysis

- ▶ Let there be *N* points and *M* layers
- Add: at most O(N), more precisely:

$$O\left(M\log\left(1+\log\frac{N}{M}\right)+\log M\log\frac{N}{\log M}\right)$$

くしゃ 本面 そうせん ほう うめんろ

- Find: $O\left(\log M \log \frac{N}{\log M}\right)$
- ► Get: *O*(log *N*)
- Delete: O(log N)

Non-Dominated Sorting

Maxim Buzdalov

lon-dominated orting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm Algorithm Analysis

Open questions

- Offline algorithm
 - What is the theoretical lower bound on the complexity?
 - What is the two-parameter complexity of the proposed algorithm?
 - How to make it faster?
- Online algorithm
 - Extend to K > 2
 - What will be the running time?
 - current guess: $O(N \log^{K-2} N)$ for insertion
 - Learn how to compute statistics (e.g. densities of all sorts)
 - Make it faster

Non-Dominated Sorting

Maxim Buzdalov

Non-dominated corting: what is t?

Offline algorithm

History Algorithm Analysis

Online algorithm

Algorithm Analysis