
ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem A. Funny Games

Input file: funny.in

Output file: funny.out

Nils and Mikael are intergalaxial fighters. Now they are competing for the planet Tellus. The size of
this small and unimportant planet is 1 < X < 10000 gobs. The problem is that their pockets only
have room for one gob, so they have to reduce the size of the planet. They have available 1 ≤ K ≤ 6
FACTOR-weapons characterized by numbers F1, F2, . . . , Fk, all less than 0.9. As is commonly known, a
FACTOR-weapon will blow off part of the planet, thus reducing the planet to a fraction of its size, given
by the characteristic. Thus, with e.g. F1 = 0.5 an application of the first weapon will half the size of the
planet. The fighter who reduces the size to less than, or equal to, 1 gob can take the planet home with
him. They take turns attacking the planet with any weapon. If Nils starts, who will win the planet?
Assume that both Nils and Mikael are omniscient and always make a winning move if there is one.

Technical note: To ease the problem of rounding errors, there will be no edge cases where an infinitesimal
perturbation of the input values would cause a different answer.

Input
The first line of input is N ≤ 100, the number of test cases. Each of the next N lines consists of X, K
and then the K numbers F1, F2, . . . , Fk, having no more than 6 decimals.

Output
For each test case, produce one line of output with the name of the winner (either Nils or Mikael).

Sample input and output

funny.in funny.out

4

6 2 0.25 0.5

10 2 0.25 0.5

29.29 4 0.3 0.7 0.43 0.54

29.30 4 0.3 0.7 0.43 0.54

Mikael

Nils

Nils

Mikael

Page 1 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem B. Nullary Computer

Input file: registers

Output file: registers

Brian Huck has invented a new power-saving computer. With the current CMOS-based processors, a
certain amount of power is lost each time a bit is changed from 0 to 1 or back. To avoid this problem,
Brian’s new Nullary Core stores only zeros. All numbers are stored in nullary form, as shown in Table 1.

Table 1: Numbers in nullary form
Decimal Nullary

0

1 0

2 00

3 000

4 0000

5 00000

.

His initial 64-nit model has 26 registers, each of which may store up to 64 nits, and any attempt to store
more than 64 nits will result in a run time error. There is also a flag register, which contains either a
zero, or nothing (initially it contains nothing). The instruction set is given in Table 2.

Table 2: NC instruction set
Instruction Explanation

A Add a zero to the value in register A (similarly
for all uppercase letters).

a First, empty the flag register. Then, if possible,
remove a zero from register A, and place it in the
flag register.

(If the flag register is empty, jump past the
matching). Otherwise, empty the flag reg-
ister.

) Jump to the matching (.

Apart from instructions, no other characters than whitespace and/or newlines are allowed in a nullary
program.

Brian has provided some programs to illustrate the elegance and simplicity of his computer (see Table 3).

Table 3: Sample NC programs
b(b)a(Ba) Move register A to register B (by first emptying

register B, then repeatedly pulling a single zero
from register A and placing it into B).

XXXa(GIa)i(g(FYg)y(Gy)f(Zb(z)z(i(YBi)

y(Iy))f)Zb(zb)z(xz)i)x

Set the flag register if the number of zeros in
register A is prime.

Your task will be to write a sorting program for Brian’s Nullary Core-based Prototype Computer. The
NCPC has limited memory, so your program must be no longer than 5432 instructions. Also, the running
time of your program must be no more than 5 ·106 steps for any possible input, where a step is considered
to be the execution of one instruction.

Important note: In the testing system, there is a special language for submitting solutions to this problem:
“Nullary Core Instructions (*.null)”. To solve this problem, you should submit source files containing

Page 2 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Nullary Code instructions. Any attempt to solve this problem using another programming language, or
(if you are curious enough!) any other problem using Nullary Core instructions will result in a Runtime
Error or in a Wrong Answer verdict.

Input
The numbers to be sorted will be given in the first 24 registers A–X; the remaining two registers (Y and
Z) will be empty.

Output
The sorted numbers should be in registers A through X, in increasing order. Register Y and Z should be
empty.

Sample input and output

registers registers

A 0

B 000000000

C 000000

D 0000

E 00000000

F 0000000

G 0000

H 000000

I 000000000

J 000

K

L

M

N

O

P

Q

R

S

T

U

V

W

X 0

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N 0

O 0

P 000

Q 0000

R 0000

S 000000

T 000000

U 0000000

V 00000000

W 000000000

X 000000000

Y

Z

Page 3 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem C. Worst Weather Ever
Input file: weather.in

Output file: weather.out

– “Man, this year has the worst weather ever!”, David said as he sat crouched in the small cave where
we had sought shelter from yet another sudden rainstorm.

– “Nuh-uh!”, Diana immediately replied in her traditional know-it-all manner.

– “Is too!”, David countered cunningly.

Terrific. Not only were we stuck in this cave, now we would have to listen to those two nagging for at
least an hour. It was time to cut this discussion short.

– “Big nuh-uh. In fact, 93 years ago it had already rained five times as much by this time of year.”

– “Duh”, David capitulated, “so it’s the worst weather in 93 years then.”

– “Nuh-uh, this is actually the worst weather in 23 years.”, Diana again broke in.

– “Yeah, well, whatever”, David sighed, “Who cares anyway?”.

Well, dear contestants, you care, don’t you?

Your task is to, given information about the amount of rain during different years in the history of the
universe, and a series of statements in the form “Year X had the most rain since year Y ”, determine
whether these are true, might be true, or are false. We say that such a statement is true if:

• The amount of rain during these two years and all years between them is known.

• It rained at most as much during year X as it did during year Y .

• For every year Z satisfying Y < Z < X, the amount of rain during year Z was less than the amount
of rain during year X.

We say that such a statement might be true if there is an assignment of amounts of rain to years for
which there is no information, such that the statement becomes true. We say that the statement is false
otherwise.

Input
Input specifications The input will consist of several test cases, each consisting of two parts. The first
part begins with an integer 1 ≤ n ≤ 50000, indicating the number of different years for which there is
information. Next follow n lines. The ith of these contains two integers −109 ≤ yi ≤ 109 and 1 ≤ ri ≤ 109

indicating that there was ri millilitres of rain during year yi (note that the amount of rain during a year
can be any nonnegative integer, the limitation on ri is just a limitation on the input). You may assume
that yi < yi+1 for 1 ≤ i < n.

The second part of a test case starts with an integer 1 ≤ m ≤ 10000, indicating the number of queries to
process. The following m lines each contain two integers −109 ≤ Y < X ≤ 109 indicating two years.

There is a blank line between test cases. The input is terminated by a case where n = 0 and m = 0.
This case should not be processed.

Technical note: Due to the size of the input, the use of cin/cout in C++ might be too slow in this
problem. Use scanf/printf instead. In Java, make sure that both input and output is buffered.

Output
There should be m lines of output for each test case, corresponding to the m queries. Queries should be
answered with “true” if the statement is true, “maybe” if the statement might be true, and “false” if the
statement is false.

Separate the output of two different test cases by a blank line.

Page 4 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Sample input and output

weather.in weather.out

4

2002 4920

2003 5901

2004 2832

2005 3890

2

2002 2005

2003 2005

3

1985 5782

1995 3048

2005 4890

2

1985 2005

2005 2015

0

0

false

true

maybe

maybe

Page 5 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem D. Kingdom

Input file: kingdom.in

Output file: kingdom.out

King Kong is the feared but fair ruler of Transylvania. The kingdom consists of two cities and N < 150
towns, with nonintersecting roads between some of them. The roads are bidirectional, and it takes the
same amount of time to travel them in both directions. Kong has G < 353535 soldiers.

Due to increased smuggling of goat cheese between the two cities, Kong has to place his soldiers on some
of the roads in such a way that it is impossible to go from one city to the other without passing a soldier.
The soldiers must not be placed inside a city or a town, but may be placed on a road, as close as Kong
wishes, to any town. Any number of soldiers may be placed on the same road. However, should any of
the two cities be attacked by a foreign army, the king must be able to move all his soldiers fast to the
attacked city. Help him place the soldiers in such a way that this mobilizing time is minimized.

The cities have ZIP-codes 95050 and 104729, whereas the towns have ZIP-codes from 0 to N − 1. There
will be at most one road between any given pair of towns or cities.

Input
The input contains several test cases. The first line of each test case is N , G and E, where N and G
are as defined above and E < 5000 is the number of roads. Then follow E lines, each of which contains
three integers: A and B, the ZIP codes of the endpoints, and φ, the time required to travel the road,
φ < 1000. The last line of the input is a line containing a single 0.

Output
For each test case in the input, print the best mobilizing time possible, with one decimal. If the given
number of soldiers is not enough to stop the goat cheese, print “Impossible” instead.

Sample input and output
kingdom.in kingdom.out

4 2 6

95050 0 1

0 1 2

1 104729 1

95050 2 1

2 3 3

3 104729 1

4 1 6

95050 0 1

0 1 2

1 104729 1

95050 2 1

2 3 3

3 104729 1

4 2 7

95050 0 1

0 1 2

1 104729 1

95050 2 1

2 3 3

3 104729 1

2 1 5

0

2.5

Impossible

3.0

Page 6 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem E. Shoot-out
Input file: shootout.in

Output file: shootout.out

This is back in the Wild West where everybody is fighting everybody. In particular, there are n cowboys,
each with a revolver. These are rather civilized cowboys, so they have decided to take turns firing their
guns until only one is left standing. Each of them has a given probability of hitting his target, and they
all know each other’s probability. Furthermore, they are geniuses and always know which person to aim
at in order to maximize their winning chance, so they are indeed peculiar cowboys. If there are several
equally good targets, one of those will be chosen at random. Note that a cowboy’s code of ethics forces
him to do his best at killing one of his opponents, even if intentionally missing would have increased his
odds (yes, this can happen!)

Input
On the first line of the input is a single positive integer t, telling the number of test cases to follow. Each
case consists of one line with an integer 2 ≤ n ≤ 13 giving the number of cowboys, followed by n positive
integers giving hit percentages for the cowboys in the order of their turns.

Output
For each test case, output one line with the percent probabilities for each of them surviving, in the same
order as the input. The numbers should be separated by a space and be correctly rounded to two decimal
places.

Sample input and output

shootout.in shootout.out

5

2 1 100

3 100 99 98

3 50 99 100

3 50 99 99

3 50 99 98

1.00 99.00

2.00 0.00 98.00

25.38 74.37 0.25

25.38 49.50 25.12

25.63 24.63 49.74

Page 7 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem F. Tour Guide
Input file: tourguide.in

Output file: tourguide.out

You are working as a guide on a tour bus for retired people, and today you have taken your regular Nordic
seniors to The Gate of Heavenly Peace. You let them have a lunch break where they could do whatever
they like. Now you have to get them back to the bus, but they are all walking in random directions.
You try to intersect them, and send them straight back to the bus. Minimize the time before the last
person is in the bus. You will always be able to run faster than any of the tour guests, and they walk
with constant speed, no matter what you tell them. The seniors walk in straight lines, and the only way
of changing their direction is to give them promises of camphor candy. A senior will neither stop at nor
enter the bus before given such a promise.

Input
A number of test cases consisting of:

• a line with an integer 1 ≤ n ≤ 8, the number of people on the tour;

• a line with a floating point number 1 < v ≤ 100, your maximum speed (you start in the bus at the
origin);

• n lines, each containing four floating point numbers xi, yi, vi, ai, the starting coordinates
(−106 ≤ xi, yi ≤ 106), speed (1 ≤ vi < 100) and direction (0 ≤ ai < 2π) of each of the tour
guests.

The input is terminated by a case with n = 0, which should not be processed. All floating point numbers
in the input will be written in standard decimal notation, and have no more than 10 digits.

Output
For each test case, print a line with the time it takes before everybody is back in the bus (the origin).
Round the answer to the nearest integer. The answer will never be larger than 106.

Sample input and output

tourguide.in tourguide.out

1

50.0

125.0 175.0 25.0 1.96

3

100.0

40.0 25.0 20.0 5.95

-185.0 195.0 6.0 2.35

30.0 -80.0 23.0 2.76

0

20

51

Page 8 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem G. Jezzball
Input file: jezzball.in

Output file: jezzball.out

“JezzBall is a computer game in which red-and-white “atoms” bounce about a rectangular field of play.
The player advances to later levels (with correspondingly higher numbers of atoms and lives) by containing
the atoms in progressively smaller spaces, until at least 75% of the area is blocked off.” (wikipedia.org)

Figure 1: Jezzball screenshot

Figure 1 shows a screenshot from the original game, where the player has already covered some space
(the black part). In this problem we will consider a slightly different, non-discrete, version of the game.
That is, while the length unit is still pixels, you should treat them as non-discrete in the sense that all
objects can be at non-integer coordinates and all movements are continuous.

The size of the playing field will be 1024 × 768 pixels. The atoms that bounce around will be infinitely
thin (and not round balls like in the screenshot). The atoms will move at a constant speed and only
change direction when hitting the edge of the playing field (x-coordinate 0 and 1024 or y-coordinate 0
and 768), where they bounce without loss of energy. The atoms do not hit each other.

The player can divide the playing field in two by shooting a horizontal or vertical ray from (in this
problem) a fixed point on the playing field. The ray will then extend in both directions simultaneously
(up and down for vertical rays, or left and right for horizontal rays) at a uniform speed (in this problem
always 200 pixels per second). The rays will also be infinitely thin. If no atom touches any part of the
ray while it’s still being extended, the field has sucessfully been divided. Otherwise the player loses a life.

If an atom touches the endpoint of an extending edge, this will not be counted as a hit. Also, if an
atom hits the ray at the same instant it has finished extending, this will also not count as a hit. Write a
program that determines the minimum time the player must wait before he can start extending a ray so
that an atom will not hit it before the ray has been completed.

Input
Each test case starts with a line containing a single integer n, the number of atoms (1 ≤ n ≤ 10). Then
follows a line containing two integers, x and y, the position where the two ray ends will start extending
from (0 < x < 1024, 0 < y < 768). Then n lines follow, each containing four integers, x, y, vx and
vy describing the initial position and speed of an atom (0 < x < 1024, 0 < y < 768, 1 ≤ |vx| ≤ 200,
1 ≤ |vy| ≤ 200). The speed of the atom in the x direction is given by vx , and the speed in the y direction
is given by vy. All positions in each input will be distinct. The input is terminated by a case where

Page 9 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

n = 0, which should not be processed. There will be at most 25 test cases.

Output
For each test case, output the minimum time (with exactly 5 decimal digits) until the player can extend
either a horizontal or vertical ray without an atom colliding with it while it is being drawn. The input
will be constructed so that the first time this occurs will be during an open interval at least 10−5 seconds
long. If no such interval is found during the first 10000 seconds, output “Never” (without quotes).

Sample input and output

jezzball.in jezzball.out

3

700 420

360 290 170 44

900 150 -53 20

890 100 130 -100

4

10 10

1 1 192 144

513 385 192 144

1023 767 -192 -144

511 383 -192 -144

0

2.80094

Never

Page 10 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem H. Traveling Salesman

Input file: traveling.in

Output file: traveling.out

Long before the days of international trade treaties, a salesman would need to pay taxes at every border
crossed. So your task is to find the minimum number of borders that need to be crossed when traveling
between two countries. We model the surface of Earth as a set of polygons in three dimensions forming
a closed convex 3D shape, where each polygon corresponds to one country. You are not allowed to cross
at points where more than two countries meet.

Input
Each test case consists of a line containing c, the number of countries (4 ≤ c ≤ 6000), followed by c
lines containing the integers nx1y1z1 . . . xnynzn, describing (in order) the n corners of a closed polygon
(3 ≤ n ≤ 20). Then follows a line with one integer m (0 < m ≤ 50), and then m lines with queries
cacb, where ca and cb are country numbers (starting with 1). No point will be on the line between two
connected points, and −106 ≤ x, y, z ≤ 106 for all points. No two non-adjacent edges of a country share
a common point. The input is terminated by a case where c = 0, which should not be processed.

Output
For each query, output the number of borders you must cross to go from ca to cb.

Sample input and output

traveling.in traveling.out

6

4 0 0 0 0 0 1 0 1 1 0 1 0

4 1 0 0 1 0 1 1 1 1 1 1 0

4 0 0 0 1 0 0 1 0 1 0 0 1

4 0 1 0 1 1 0 1 1 1 0 1 1

4 0 0 0 0 1 0 1 1 0 1 0 0

4 0 0 1 0 1 1 1 1 1 1 0 1

2

1 2

1 3

0

2

1

Page 11 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem I. Whac-a-Mole
Input file: whacamole.in

Output file: whacamole.out

While visiting a traveling fun fair you suddenly have an urge to break the high score in the Whac-a-Mole
game. The goal of the Whac-a-Mole game is to. . . well. . . whack moles. With a hammer. To make the
job easier you have first consulted the fortune teller and now you know the exact appearance patterns of
the moles.

The moles appear out of holes occupying the n2 integer points (x, y) satisfying 0 ≤ x, y < n in a two-
dimensional coordinate system. At each time step, some moles will appear and then disappear again
before the next time step. After the moles appear but before they disappear, you are able to move
your hammer in a straight line to any position (x2, y2) that is at dis- tance at most d from your current
position (x1, y1). For simplicity, we assume that you can only move your hammer to a point having
integer coordinates. A mole is whacked if the center of the hole it appears out of is located on the line
between (x1, y1) and (x2, y2) (including the two endpoints). Every mole whacked earns you a point.
When the game starts, before the first time step, you are able to place your hammer anywhere you see
fit.

Input
The input consists of several test cases. Each test case starts with a line containing three integers n,
d and m, where n and d are as described above, and m is the total number of moles that will appear
(1 ≤ n ≤ 20, 1 ≤ d ≤ 5, and 1 ≤ m ≤ 1000). Then follow m lines, each containing three integers x, y
and t giving the position and time of the appearance of a mole (0 ≤ x, y < n and 1 ≤ t ≤ 10). No two
moles will appear at the same place at the same time.

The input is ended with a test case where n = d = m = 0. This case should not be processed.

Output
For each test case output a single line containing a single integer, the maximum possible score achievable.

Sample input and output

whacamole.in whacamole.out

4 2 6

0 0 1

3 1 3

0 1 2

0 2 2

1 0 2

2 0 2

5 4 3

0 0 1

1 2 1

2 4 1

0 0 0

4

2

Page 12 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem J. Copying DNA

Input file: dna.in

Output file: dna.out

Evolution is a seemingly random process which works in a way which resembles certain approaches we use
to get approximate solutions to hard combinatorial problems. You are now to do something completely
different.

Given a DNA string S from the alphabet {A,C,G,T}, find the minimal number of copy operations needed
to create another string T . You may reverse the strings you copy, and copy both from S and the pieces
of your partial T . You may put these pieces together at any time. You may only copy contiguous parts
of your partial T , and all copied strings must be used in your final T . Example: From S = “ACTG” create
T = “GTACTATTATA”

1. Get GT......... by copying and reversing “TG” from S.

2. Get GTAC....... by copying “AC” from S.

3. Get GTAC...TA.. by copying “TA” from the partial T .

4. Get GTAC...TAAT by copying and reversing “TA” from the partial T .

5. Get GTACAATTAAT by copying “AAT” from the partial T .

Input
The first line of input gives a single integer, 1 ≤ t ≤ 100, the number of test cases. Then follow, for each
test case, a line with the string S of length 1 ≤ m ≤ 18, and a line with the string T of length 1 ≤ n ≤ 18.

Output
Output for each test case the number of copy operations needed to create T from S, or impossible if it
cannot be done.

Sample input and output

dna.in dna.out

5

ACGT

GTAC

A

C

ACGT

TGCA

ACGT

TCGATCGA

A

AAAAAAAAAAAAAAAAAA

2

impossible

1

4

6

Page 13 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem K. Circle of Debt
Input file: debt.in

Output file: debt.out

The three friends Alice, Bob, and Cynthia always seem to get in situations where there are debts to be
cleared among themselves. Of course, this is the “price” of hanging out a lot: it only takes a few resturant
visits, movies, and drink rounds to get an unsettled balance. So when they meet as usual every Friday
afternoon they begin their evening by clearing last week’s debts. To satisfy their mathematically inclined
minds they prefer clearing their debts using as little money transaction as possible, i.e. by exchanging as
few bank notes and coins as necessary. To their surprise, this can sometimes by harder than it sounds.
Suppose that Alice owes Bob 10 crowns and this is the three friends’ only uncleared debt, and Alice has a
50 crown note but nothing smaller, Bob has three 10 crown coins and ten 1 crown coins, and Cynthia has
three 20 crown notes. The best way to clear the debt is for Alice to give her 50 crown note to Cynthia,
Cynthia to give two 20 crown notes to Alice and one to Bob, and Bob to give one 10 crown coin to
Cynthia, involving a total of only five notes/coins changing owners. Compare this to the straight-forward
solution of Alice giving her 50 crown note to Bob and getting Bobs three 10 crown notes and all his 1
crown coins for a total of fourteen notes/coins being exchanged!

Input
On the first line of input is a single positive integer, 1 ≤ t ≤ 50, specifying the number of test cases to
follow. Each test case begins with three integers ab, bc, ca ≤ 1000 on a line of itself. ab is the amount
Alice owes Bob (negative if it is Bob who owes Alice money), bc the amount Bob owes Cynthia (negative
if it is Cynthia who is in debt to Bob), and ca the amount Cynthia owes Alice (negative if it is Alice who
owes Cynthia).

Next follow three lines each with six non-negative integers a100, a50, a20, a10, a5, a1, b100, . . . , b1, and
c100, . . . , c1, respectively, where a100 is the number of 100 crown notes Alice got, a50 is the number of
her 50 crown notes, and so on. Likewise, b100, . . . , b1 is the amount of notes/coins of different value Bob
got, and c100, . . . , c1 describes Cynthia’s money. Each of them has at most 30 coins (i.e. a10 + a5 + a1,
b10 + b5 + b1, and c10 + c5 + c1 are all less than or equal to 30) and the total amount of all their money
together (Alice’s plus Bob’s plus Cynthia’s) is always less than 1000 crowns.

Output
For each test case there should be one line of output containing the minimum number of bank notes and
coins needed to settle the balance. If it is not possible at all, output the string “impossible”.

Sample input and output

debt.in debt.out

3

10 0 0

0 1 0 0 0 0

0 0 0 3 0 10

0 0 3 0 0 0

-10 -10 -10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-10 10 10

3 0 0 0 2 0

0 2 0 0 0 1

0 0 1 1 0 3

5

0

impossible

Page 14 of 15

ETH Zurich Trainingsweek – April 2015
Training 1 – Simple Problems for Warming Up. 13 April 2015

Problem L. Full Tank?
Input file: tank.in

Output file: tank.out

After going through the receipts from your car trip through Europe this summer, you realised that the
gas prices varied between the cities you visited. Maybe you could have saved some money if you were a
bit more clever about where you filled your fuel?

To help other tourists (and save money yourself next time), you want to write a program for finding the
cheapest way to travel between cities, filling your tank on the way. We assume that all cars use one unit
of fuel per unit of distance, and start with an empty gas tank.

Input
The first line of input gives 1 ≤ n ≤ 1000 and 0 ≤ m ≤ 10000, the number of cities and roads. Then
follows a line with n integers 1 ≤ pi ≤ 100, where pi is the fuel price in the ith city. Then follow m lines
with three integers 0 ≤ u, v < n and 1 ≤ d ≤ 100, telling that there is a road between u and v with
length d. Then comes a line with the number 1 ≤ q ≤ 100, giving the number of queries, and q lines with
three integers 1 ≤ c ≤ 100, s and e, where c is the fuel capacity of the vehicle, s is the starting city, and
e is the goal.

Output
For each query, output the price of the cheapest trip from s to e using a car with the given capacity, or
“impossible” if there is no way of getting from s to e with the given car.

Sample input and output

tank.in tank.out

5 5

10 10 20 12 13

0 1 9

0 2 8

1 2 1

1 3 11

2 3 7

2

10 0 3

20 1 4

170

impossible

Page 15 of 15

