Day 1 Editorial
 April 26, 2016

ETH Zurich ACM ICPC Training Camp. April 2016

A. Bandits

Problem statement

- There were m bandits
- They wanted to divide n diamonds between each other
- Each bandit can make a proposal:
- Proposal is an array $a_{1}, a_{2} \ldots a_{m}, a_{i}$ - how many diamonds does the i-th bandit gets
- $\sum_{i=1}^{m} a_{i}=n$
- Each bandit votes for or against the proposal
- Bandit i votes for the proposal if otherwise he survives and gets at least a_{i} diamonds
- If the number of votes for didn't exceed $\frac{m}{2}$, then the bandit which proposed is killed
- Then next bandit makes the proposal and so on
- Find the maximum number of diamonds the bandit that proposes first can get

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1, if bandit dies)

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1, if bandit dies)
- When $k+1$ bandits left, the bandit that makes the proposal has to attract at least $\left\lfloor\frac{k}{2}\right\rfloor$ bandits on his side

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1, if bandit dies)
- When $k+1$ bandits left, the bandit that makes the proposal has to attract at least $\left\lfloor\frac{k}{2}\right\rfloor$ bandits on his side
- So he must propose them more than a_{i}

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1, if bandit dies)
- When $k+1$ bandits left, the bandit that makes the proposal has to attract at least $\left\lfloor\frac{k}{2}\right\rfloor$ bandits on his side
- So he must propose them more than a_{i}
- Which $\left\lfloor\frac{k}{2}\right\rfloor$ bandits to choose?

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1 , if bandit dies)
- When $k+1$ bandits left, the bandit that makes the proposal has to attract at least $\left\lfloor\frac{k}{2}\right\rfloor$ bandits on his side
- So he must propose them more than a_{i}
- Which $\left\lfloor\frac{k}{2}\right\rfloor$ bandits to choose?
- With minimal a_{i}
- Give them $a_{i}+1$ diamonds, give nothing to others

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1 , if bandit dies)
- When $k+1$ bandits left, the bandit that makes the proposal has to attract at least $\left\lfloor\frac{k}{2}\right\rfloor$ bandits on his side
- So he must propose them more than a_{i}
- Which $\left\lfloor\frac{k}{2}\right\rfloor$ bandits to choose?
- With minimal a_{i}
- Give them $a_{i}+1$ diamonds, give nothing to others
- If you don't have enough diamonds, then you are dead

A. Bandits

Solution

- Let's start from the end
- If only one bandit left, he gets all the diamonds
- Suppose $a_{1}, a_{2}, \ldots, a_{k}$ is the number of diamonds each of the k alive bandits get (and -1 , if bandit dies)
- When $k+1$ bandits left, the bandit that makes the proposal has to attract at least $\left\lfloor\frac{k}{2}\right\rfloor$ bandits on his side
- So he must propose them more than a_{i}
- Which $\left\lfloor\frac{k}{2}\right\rfloor$ bandits to choose?
- With minimal a_{i}
- Give them $a_{i}+1$ diamonds, give nothing to others
- If you don't have enough diamonds, then you are dead
- Otherwise you get all the rest

A. Bandits

Example

- 5 bandits, 1000 diamonds

A. Bandits

Example

- 5 bandits, 1000 diamonds
- 1 bandit: he gets 1000

A. Bandits

Example

- 5 bandits, 1000 diamonds
- 1 bandit: he gets 1000
- 2 bandits: must give 1001 to first bandit, cannot do so, bandits get $(1000,-1)$

A. Bandits

Example

- 5 bandits, 1000 diamonds
- 1 bandit: he gets 1000
- 2 bandits: must give 1001 to first bandit, cannot do so, bandits get $(1000,-1)$
- 3 bandits: must give 0 to second bandit can give 0 to first bandit, bandits get $(0,0,1000)$

A. Bandits

Example

- 5 bandits, 1000 diamonds
- 1 bandit: he gets 1000
- 2 bandits: must give 1001 to first bandit, cannot do so, bandits get $(1000,-1)$
- 3 bandits: must give 0 to second bandit can give 0 to first bandit, bandits get ($0,0,1000$)
- 4 bandits: $(1,1,0,999)$

A. Bandits

Example

- 5 bandits, 1000 diamonds
- 1 bandit: he gets 1000
- 2 bandits: must give 1001 to first bandit, cannot do so, bandits get $(1000,-1)$
- 3 bandits: must give 0 to second bandit can give 0 to first bandit, bandits get ($0,0,1000$)
- 4 bandits: $(1,1,0,999)$
- 5 bandits: $(0,2,1,997)$ or (2, 0, 1, 997)

B. Fitness Club

Problem statement

- n training sessions are to be in fitness club
- $a_{i}+b_{i}$ men visit i-th of them
- a_{i} of these close lockers they use, and b_{i} don't
- Find the minimum number of opened lockers after the last training session

Solution

- Minimize the number of open lockers after each session
- Greedily give open lockers to the visitors first, if it's not enough give some of the closed, too
- Let x be the number of open lockers before the session
- After the session the number of open lockers is $\max \left(x-a_{i}, b_{i}\right)$

C. Graduated Lexicographical Ordering

Problem statement

- Consider integer number from 1 to n
- grlex ordering is: a is before b if $(w(a)<w(b))$ or $\left(w(a)=w(b)\right.$ and $\left.a_{10}<b_{10}\right)$
- where $w(x)$ is the sum of digits in decimal representation of x
- and x_{10} is the decimal representation itself
- Find the position of k in this ordering

C. Graduated Lexicographical Ordering

Solution

- You have to find the number of numbers that are before k
- First find the number of those, that $w(x)<w(k)$
- You have to calculate $f(s)$ - the number of x from 1 to n, such that sum of digits of x equals to s
- To calculate that find $c(L, S)$ - number of x consisting of L digits and $w(x)=S$
- Get all numbers, which has length less than $\left|n_{10}\right|$
- Then for each p find the number of x having longest common prefix with n equal to p and of the same length as n

C. Graduated Lexicographical Ordering

Find those having the same $w(x)$

- For every p let's consider those p, that $\operatorname{LCP}\left(x_{10}, k_{10}\right)=p$
- Try every next digit that is less, than the next digit in k
- Count the number of ways to append something to get number not greater than n
- To do that iterate over $p_{2}: \operatorname{LCP}\left(n_{10}, x_{10}\right)$
- Check if p and p_{2} are not contradictive
- Count the way to append $n-\max \left(p, p_{2}\right)-1$ digits

D. Network Wars

Problem Statement

- You are given a graph
- Find the cut with minimum mean cost

D. Network Wars

Solution

- Common approach for such problems: binary search for the answer
- Need to check: given z, whether there exists cut with mean cost at most z

Given z, is there a cut with mean cost at most z ?

- Subtract z from all costs
- Mean cost of every cut decreased by z
- Is there cut with mean cost at most 0 ?
- Let's find minimal cost cut
- Get all negative edges
- For every positive edge add the edge with such capacity in network
- Find maximal flow

E. N -gons

Problem statement

- Find numbers $a_{1}, a_{2}, \ldots, a_{m}$ such that
- $1 \leqslant a_{i} \leqslant k$
- For any subset of size n, it was impossible to construct polygon with these side lengths
- Maximize m

E. N -gons

Solution

- Can make a polygon from $b_{1} \leqslant b_{2} \leqslant \ldots \leqslant b_{k}$ if

$$
b_{1}+b_{2}+\ldots+b_{k-1}>b_{k}
$$

- Order a_{i} by increasing of their values
- It's enough to check $a_{i}, a_{i+1}, \ldots, a_{i+n-1}$
- Let $a_{1}=a_{2}=\ldots=a_{n-1}=1$
- Let $a_{i}=a_{i-1}+a_{i-2}+\ldots+a_{i-n+1}$, for $i \geqslant n$
- Continue, while $a_{i} \leqslant k$

Problem statement

- Given text containing numbers in English
- Convert some of them to digits
- Leave the minimum number of words unconverted
- Maximize the first converted number, then the second and so on

F. Numbers to Numbers

Solution

- Dynamic programming approach: $f(i)$ - the least number of words left unconverted when converting text starting from word i
- You either don't convert i-th word, then $f(i)=f(i+1)+1$
- Or you convert, then try all j, so that words from i to j form a number and choose minimal $f(j+1)$, so $f(i)=f(j+1)$
- Restoring the answer:
- if $f(i)=f(i+1)+1$, then don't convert i-th word
- Otherwise choose such j, so that $f(i)=f(j+1)$ and the number formed is maximized
- There is not more than 18 words in a number

G. Beautiful Permutation

Problem statement

- Find permutation, such that maximal monotonic subsequence is minimized
- Find lexicographically smallest such permutation

G. Beautiful Permutation

Solution

- Maximal monotonic subsequence is at least $\lceil\sqrt{n} \mid$
- Consider up [i] - longest increasing subsequence ending at i-th element
- Consider down[i] - longest increasing subsequence starting at i-th element
- Pairs (up[i], down[i]) are distinct
- Suppose up[i] $=u p[j]$ and down[i] $=\operatorname{down}[j]$, for $i<j$
- If $a_{i}<a_{j}$ then up $[i] \leqslant \operatorname{up}[j]$
- If $a_{i}>a_{j}$ then down[i] $\geqslant \operatorname{down}[j]$

Getting such permutation

- $n=u^{2}$

$$
\cdot u, u-1, \ldots, 1,2 u, 2 u-1, \ldots, 2 u-u+1, \ldots, u^{2}, \ldots(u-1) u+1
$$

- $n=u^{2}-t$
- Use pattern above and remove all element greater than n

H. Beautiful Numbers

Problem statement

- Given a phone number
- There are some patterns that give you bonus
- Find the number partition into substrings to get maximum bonus

Solution

- Iterate over all different partitions
- Find the bonus
- Choose the best

I. Flipping Bits

Problem statement

- You have a string of ' 0 '-s and ' 1 '-s of length n
- You also have an integer m
- In one move you can either flip one bit, or flip first $k \cdot m$ bits for some positive integer k
- What is the minimal number of moves needed to get a string, prefix and suffix of length $n-m$ of which are equal to each other

000

I. Flipping Bits

Solution

- If prefix of length $n-m$ equals to suffix of length $n-m$, then the string has period $m\left(s_{i}=s_{i+m}\right)$
- If $m \leqslant \sqrt{n}$:
- Try all prefixes of length m, there are 2^{m} of them, let's call it p
- For every $s[i m . .(i+1) m)$ you can calculate the number of moves needed to make it equal to p and to p^{r}
- p^{r} is flipped p
- Do the dynamic programming $f(i, j)$ - the number of flips to make, if you put all s_{j} for $j \geqslant i$ correctly and the parity of number of big flips made for $k>i$ is $j(j=0$ or $j=1)$
- Transition is: You either get p or p^{r} and depending on j you have to do the flip or not

I. Flipping Bits

Solution

- If $m>\sqrt{n}$:
- m is period, so the final string divides on equal blocks
- The number of blocks is $\left\lceil\frac{n}{m}\right\rceil \leqslant \sqrt{n}+1$
- For every block decide, whether we do it equal to prefix, or equal to flipped prefix
- There are $2^{\left\lceil\frac{n}{m}\right\rceil}$ ways to do that
- Count the number of big flips to be made and make them
- For every $0 \leqslant r<m$ count the number of $s_{i m+r}$ that need to change if $p_{r}=0$ and if $p_{r}=1$
- For every r choose p_{r}, so that less changes is needed
- Sum everything up
- Overall complexity is $O\left(2^{\sqrt{n}} n\right)$

Problem statement

- There are $k \leqslant 10$ maps
- Each map consist of $n \leqslant 50$ vertices and $m \leqslant 1500$ edges
- Start end finish vertices are selected on each map
- You must move a token on each map along some edge during a move
- Your goal is to move all tokens to finish vertices in minimum number of moves

J. Puzzle

Solution

- If there is a path of length X, there is a path of length $X+2$ (because you can move back and forth alone an edge)
- So let's find shortest even and odd pathes on each map
- If there is no even path on some map you can't win with even number of moves
- Same for odd number of moves
- Answer is smaller of maximums for even and odd number of moves

Problem statement

- There was a tree with n leafs
- $n \leqslant 200$
- You are given pairwise distances for all leafs
- You need to restore a tree with such distances or say that there is no such tree

K. Restore the tree

Solution

Let's look at some leafs A, B and D. We can find vertex C which is the only vertex belongs to all three pathes $A B, A D$ and $B D$.

To do this use equation: $|A C|=\frac{|A B|+|A D|-|B D|}{2}$

K. Restore the tree

Solution

We can find a diametr of a tree. It is two leafs with biggest distance between them. Let's call them A and B.
Than iterate over all other leafs and hang them on a proper vertex of diametr.
Let's call a leaf we a currently looking at as D. And vertex on a path C. Now we need to consider some cases.

K. Restore the tree

Solution

If there are no other vertices is connected to C just create a path of new vertices to hang vertex D.

K. Restore the tree

Solution

Otherwise iterate over all leafs in a subtree of vertex C. Choose a leaf which has longest common path from diametr. Create a new path starting from LCA.

K. Restore the tree

Solution

Otherwise iterate over all leafs in a subtree of vertex C. Choose a leaf which has longest common path from diametr. Create a new path starting from LCA.

K. Restore the tree

Solution

Don't forget to check a tree in the end:

- All vertices from input are leafs
- All distances from input are correct

L. String

Problem statement

- You are given a recurent equation for strings:
- s_{0} is an empty string
- $s_{i}=s_{i-1}$ if s_{i-1} contains decimal representation of i
- $s_{i}=s_{i-1}+i$ otherwise
- Find $s_{n}, n \leqslant 500$

L. String

Solution

- $n \leqslant 500$
- So we can generate all s_{i} in a naive way
- It takes O (length) to check if string contains a number
- Total complexity is $O\left(n^{2}\right)$

M. Shooting game

Problem statement

- There are $n \leqslant 8$ segments on a plane
- Let's call $\operatorname{dist}(A B)$ for points A and B a number of segments from input which intersects segment $[A B]$
- Find $\min _{A} \max _{B} \operatorname{dist}(A B)$ for all possible points A and B

M. Shooting game

Solution

- Suppose we fixed point A
- How to find $\max _{B} \operatorname{dist}(A B)$?

M. Shooting game

Solution

We can usa a sweeping line algorithm to find best position for B. Let's A has coordinates (0,0). Count number of intersections if we place B in (+inf, 0).

M. Shooting game

Solution

We can use a sweeping line algorithm to find best position for B. Let's A has coordinates $(0,0)$. Count number of intersections if we place B in $(+\infty, 0)$. Move B counterclockwise and maintain number of intersections.

M. Shooting game

Solution

We can use a sweeping line algorithm to find best position for B.
Let's A has coordinates $(0,0)$. Count number of intersections if we place B in $(+\infty, 0)$. Move B counterclockwise and maintain number of intersections. Choose best position.

M. Shooting game

Solution

- Will the answer change if we move A "a little"?

M. Shooting game

Solution

- Will the answer change if we move A "a little"?
- It will not change if angles in which we see segments ends from A don't change their order.

M. Shooting game

Solution

- Will the answer change if we move A "a little"?
- It will not change if angles in which we see segments ends from A don't change their order.
- For each pair of points there is a half plane where first point goes before second, and half plane where second goes before first.

M. Shooting game

Solution

- Will the answer change if we move A "a little"?
- It will not change if angles in which we see segments ends from A don't change their order.
- For each pair of points there is a half plane where first point goes before second, and half plane where second goes before first.
- So divide whole plane into parts and solve separately for each part.

M. Shooting game

Solution

- Will the answer change if we move A "a little"?
- It will not change if angles in which we see segments ends from A don't change their order.
- For each pair of points there is a half plane where first point goes before second, and half plane where second goes before first.
- So divide whole plane into parts and solve separately for each part.
- There are $O\left(n^{2}\right)$ lines which divide plane on $O\left(n^{4}\right)$ parts. For each part we can solve problem in $O(n \log n)$ time, so total complexity is $O\left(n^{5} \log n\right)$.

