Day 4 Editorial
April 29, 2016

ETH Zurich ACM ICPC Training Camp. April 2016

A. Barcode

@ Dynamic programming

e Total complexity is O(n)

C. Capital

@ That's just a tree dynamic programming exercise

void goUp(int v, int parent, int maxUp) {
int maxl = —1;
int max2 = —1;

up[v] = maxUp;
for (int to : edges[v]) {

if (to =— parent) continue;

if (maxl1 < 0 || down[maxl] < down[to]) {
max2 = maxl;
maxl = to;

} else if (max2 < 0 || down[max2] < down[to]) {
max2 = to;

}

for (int to : edges[v]) {

if (to =— parent) continue;

int maxDown = maxl == to ? max2 : maxl;

maxDown = maxDown >= 0 ? down[maxDown] : 0;

goUp(to, v, Math. max(maxUp, maxDown));

D. Piatra Neamt

@ That's another tree dynamic programming exercise

@ For every vertex compute down[v] — sum of distances going
down in rooted tree

@ And calculate up[v] — sum of distances that the one or more
first edges on path going up

@ As you have to satisfy two of three
@ Instead of x, y, z make

QO x0Ry
Q xO0R z
Q@ yOR z
@ Solve 2SAT problem

F. Connections

@ Problem is just equivalent to number of correct bracket
sequences

@ Answer is catalan sequence

o Calculate using dynamic programming

G. lvan's Game

@ Cost of the move (51 — K1) x (S2 — K2)
e Subtract 1 from all the values, so cost of the move is now
51 X 52
@ There’s no profit making moves K; > 1 and Ky > 1
e Sum of all pairs of numbers added
o Can divide each sequence into two, will be better

@ If Kt =1 or K; =1 it's just sum of multiplications of a
number from one of the sequences to some numbers of other
sequences

e The same as taking pairs of numbers one by one
@ So do dynamic programming £ [a] [b] — the smallest sum can

make if all numbers / > a in first sequence and j > b in second
sequence are taken

@ You either take both, or one of the numbers

@ State is (values of registers, instruction pointer). Total number
of states is 232 x 16 which is too much.

@ Not all registers are important
o If we have jz x a command than a register is important

@ If we have MOV a b command and a is important than b is
also important

@ Same rules for other instructions (one instrction add not more
than one important register)

@ Not more than 16 important registers

216

@ Total number of interesting states is x 16. So we can do

bfs on all interesting states.

J. Packing Trees

@ The problem is to color tree into several colors, so that

expected number of color changes on path from vertex to root
is minimized

o First observation: every color makes connected set of vertices

e If not, you can make a new color for one of the regions, answer
won't change

<

J. Packing Trees

@ You can calculate the expected number of times each edge is
traversed

@ Do the dynamic programming: f [v] [B] — the expected
number of color changes in subtree rooted at v, so that the
number of vertices colored to the same color as root is B

@ For every of children you either start new color component,
then you added number of times you traversed the edge

@ Or continue the same color

@ Do the internal DP: g[i] [B] — the expected number of color
changes in the first i children so that B vertices of the same
color used

@ We need to solve a system of linear inequalities

@ Common way of doing this is Simplex algorithm or Ellipsoid
algorithm

@ But this task also can be solved with approximate algorihtms

L. Robots on a Board

o If robot repeats his list of commands 224 times, he will fall of
the board

@ So we need only 224

x 256 moves to make
o This will exceed the time limit

@ Robots can collide in next 256 moves only if the distance
between them is not more than 256
o Let's precalculate for every of second robot’s position

respective to first robot (256 x 256 positions) will they collide
and when

e This is calculated just simulating for all the starting respective
positions
@ Then we can simulate robots’ programs in O(1)

e Lookup will they collide in one iteration
o If not change their position
o Repeat 22* times

M. Safe Cracking

@ That is the standard problem

@ The optimal final position of all holes coincide with one of the
initial positions

o O(n?) solution is just try all of them, for every other compute
minimum of two distances and sum up

@ To do O(n) you can use two-pointers technique, the elements

form two segments in cyclic array, if you sort all the numbers
initially

@ Accurately implement

@ The problem says that given some polynomial values in
calculated modulo some prime in some points, get the
polynomial

@ https://en.wikipedia.org/wiki/Lagrange_polynomial

@ You can divide modulo prime

https://en.wikipedia.org/wiki/Lagrange_polynomial

O. Stairs

@ The key idea is just when two guys meet, they keep moving
not interfering with each other

P. Protect the Statues

@ Problem is to find the area of convex hull of all circles

@ Since we need only %0 accuracy and coordinates are up to 10*
@ Get 1000 points on each circle

@ Build convex hull
o

Output area of the polygon

Q. Street Directions

o Create two edges for every bridge in both directions
@ Take biconnected component, use DFS to direct the edges:

o Build spanning tree using DFS
e The edges in spanning tree direct from it's parent to child
e The other edges direct from descendants to ancestors

R. Word Rings

@ Build graph:
o 262 vertices for all pairs of letters
e Every word is an edge from its first two letters to its last two

@ Problem is to find the minimum mean cost cycle

o dn,v—d;
Answer is: min max ——*
v 1

Where d;, — is the shortest path from some vertex s to v
with i edges

s is the vertex that everything is reachable from it

For more information find papers about minimum mean cost
cycle

