
Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem A. Complexity

Input file: complexity.in

Output file: complexity.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Modern algorithms often have complexities that are hard to remember and understand, like O(V E log V 2

E
).

Andrew likes writing programs much more than studying theoretical algorithms, so he has invented a new
way to remember those mindboggling complexity formulas: he will not remember them at all! Instead,
when he needs to know the complexity of a particular algorithm, he will write the corresponding program,
run it, measure the running time, and figure out the complexity formula that fits it.

In this problem we will consider the simplified case where the input to the program is just one positive
integer N . Given this positive integer N and the corresponding running time X (which is also a positive
integer) of the program, Andrew needs to represent X as a sum of products of N , log N , log log N and
so on, for example: X = N log log N + N · N .

Since both N and X are integers, we define log a to be integer as well: it is the floor of the binary
logarithm of N , meaning the largest integer k such that 2k ≤ a. So for example log log N means the floor
of the binary logarithm of the floor of the binary logarithm of N . The logarithm of zero or any negative
number is undefined.

Andrew doesn’t allow the formula to contain integer factors (he remembers that there weren’t any in his
complexity theory classes for some reason) and parentheses (that would be too complicated). The only
type of formula he’s interested in is the sum of one or more terms, where each term is a product of one
or more factors, and each factor is one of N , log N , log log N , log log log N and so on.

Since there can be several such formulas that evaluate to X, Andrew wants the one that has the fewest
mentions of N in it (since every factor has exactly one mention, this means the fewest total number of
factors). If there are several formulas with the fewest Ns, he doesn’t care which one to choose.

Input

The only line of the input file contains two integers N and X, 1 ≤ N,X ≤ 100 000.

Output

Output one integer — the fewest number of Ns in a formula that evaluates to X.

Examples

complexity.in complexity.out

100 3604 5

Note

N log N log N + log log N + log log N = 100 · 6 · 6 + 2 + 2 = 3604.

Page 1 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem B. Divisibility Tree

Input file: divisibility-tree.in

Output file: divisibility-tree.out

Time limit: 2 seconds
Memory limit: 256 megabytes

A rooted tree is called a divisibility tree when every node of the tree is assigned a positive integer, such
that the number assigned to a parent of each node is strictly less than the number assigned to the node,
and divides it evenly.

Given a rooted tree with numbers assigned to its leaves (nodes with no children), you need to assign
numbers to all other nodes in such a way that the tree becomes a divisibility tree.

Input

The first line of the input file contains an integer n, denoting the number of nodes in the tree,
1 ≤ n ≤ 1000.

The next n lines describe the nodes of the tree. The i-th node is described with 2 integers pi and ai. The
value of pi is the 1-based index of the parent of this node (or −1 if this node is the root). Additionally, pi

is always less than i. The value of ai is the number assigned to this node, or −1 if no number is assigned
yet. Numbers will be assigned to all leaves, and to no other nodes.

The root of the tree is the first node. All assigned numbers don’t exceed 109.

Output

Output n positive integers separated by spaces — the numbers assigned to the nodes. If there are several
possible solutions, output any one. If there is no solution, output n times −1.

Examples

divisibility-tree.in divisibility-tree.out

5

-1 -1

1 2

1 -1

3 6

3 8

1 2 2 6 8

3

-1 -1

1 -1

2 2

-1 -1 -1

Page 2 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem C. Progressing Fraction

Input file: fraction.in

Output file: fraction.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Young Andrew was always wondering: how many powers of 2 start with 7 in decimal notation? There
seem to be relatively few at the beginning (the smallest one is 246 = 70368744177664), but such powers
start to appear more often afterwards. Imagine how excited he was to learn that about 5.7991946977. . .%
of all powers of two start with 7!

He is now after a more general question. Given a number n, and a geometric progression ai = b · qi,
i ≥ 0, what is the fraction of the elements of that progression with decimal notation that has the decimal
notation of n as prefix? More formally, if ci out of the first i elements of the progression start with n in
decimal notation, you need to find the limit lim

i→∞

ci

i
. It is guaranteed that the limit always exists.

Input

The only line of the input file contains three integers n, b and q. 1 ≤ n, b, q ≤ 1000.

Output

Output one floating-point number — the sought fraction. Your answer will be considered correct if it is
within 10−9 of the right answer.

Examples

fraction.in fraction.out

7 1 2 0.057991946977686705

Page 3 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem D. 4-Character Percentage

Input file: percentage.in

Output file: percentage.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Andrew has invented a novel way of remembering his passwords. First, he chooses a string s consisting
of at least 4 lowercase English letters. Then, he looks at all 4-character sequences that can be obtained
by taking any 4 characters of s and writing them in the same order as they appear in s (more formally,
he looks at all quadruples of numbers 1 ≤ i < j < k < l ≤ length(s), and the corresponding strings
sisjsksl). Then, he counts the number of times each 4-character string appears in this list, and orders
all 4-character strings that appear at least once by frequency. Then, he uses several most frequent ones
as passwords.

You need to help him to find these frequent 4-character strings. More specifically, given s, you need to
find all 4-character strings that form at least 1% of all strings from the above list, and find the frequency
for each of those strings. Formally, for each 4-character string t that appears nt times out of n total items
in the list, we find the truncated percentage pt which is the largest integer such that nt

n
≥ pt

100
. For each

4-character string t where pt ≥ 1 you need to output this string, together with the truncated percentage.
Additionally, if there is at least one string t with pt = 0 in the above list, you should output “Others
less than 1%” in the end.

Input

The only line of the input file contains the string s consisting of lowercase English letters. The length of
s is between 4 and 10000, inclusive.

Output

Output all 4-character strings that take at least 1% of the list in the decreasing order of their truncated
percentage. When several strings have the same truncated percentage, order them lexicographically. For
each string, you should print the string, then a space, then the truncated percentage with the “%” sign
after it, in one line. Output “Others less than 1%” in the end if there are strings with the truncated
percentage of 0 appearing at least once in the list. See sample output for further clarification.

Page 4 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Examples

percentage.in percentage.out

tests ests 20%

tess 20%

test 20%

tets 20%

tsts 20%

aabbccdd abcd 22%

aabc 5%

aabd 5%

aacd 5%

abbc 5%

abbd 5%

abcc 5%

abdd 5%

accd 5%

acdd 5%

bbcd 5%

bccd 5%

bcdd 5%

aabb 1%

aacc 1%

aadd 1%

bbcc 1%

bbdd 1%

ccdd 1%

testaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaa 59%

taaa 17%

eaaa 8%

saaa 8%

Others less than 1%

Page 5 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem E. Random Strings

Input file: random-strings.in

Output file: random-strings.out

Time limit: 2 seconds
Memory limit: 256 megabytes

A test generator is a ubiquitous part of an algorithm contest problem. Here, we’re studying a test
generator that generates a single string consisting of lowercase English letters.

The test generator in question has two strategies:

• the first strategy is to generate a completely random string: each letter is chosen uniformly and
independently at random.

• the second strategy is slightly more complicated: first letter is chosen uniformly at random. Then,
whenever a letter is chosen, its probability to be chosen at the next step and later decreases by
the factor of 2. More formally, each of the 26 letters is assigned a weight, with the initial value
of all weights equal to 1. At each step, we pick a random letter independently, but according to
the current weights (letter x has probability weightx

P

i
weighti

of being chosen). The weight of the chosen

letter is divided by 2 afterwards, and the process is repeated for the next letter.

Given many relatively long strings built by this generator, can you determine the strategy used for each
string?

Input

The first line of the input file contains one integer n, 1 ≤ n ≤ 100, the number of strings to analyze.

The next n lines contain one string of lowercase English letters each. The length of each string is exactly

1000. These strings will be generated according to one of the above strategies (different strategies may
be used for different strings).

Output

Output n lines. The i-th line should contain “FIRST” if the first strategy (all letters are chosen indepen-
dently and uniformly) was used for this string, and “SECOND” otherwise.

Examples

random-strings.in random-strings.out

4

kshklmfsnhggrefxnkcviqdgnawgtq

jpdutxmiselqokxjemccnphgdbszlf

drmigzsvclhpiyogtefkqwurhabsgy

ylfhbkgwerdbkxqriltuzkvpsxgddt

FIRST

SECOND

SECOND

FIRST

Note

Note that the strings in the example input are too short — such testcases won’t be used when judging.
Every input string will contain exactly 1000 letters.

Page 6 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem F. Rotor Traversal
Input file: rotor.in

Output file: rotor.out

Time limit: 2 seconds
Memory limit: 256 megabytes

There are many ways to traverse an undirected graph. One of them is rotor traversal : for each vertex,
we choose a rotor sequence, which is a permutation of all vertices adjacent to this vertex. Then, we start
our traversal at some vertex. When we reach a vertex for this first time, we continue to the first vertex
of its rotor sequence. When we reach a vertex for the second time, we continue to the second vertex of
its rotor sequence, and so on. When we reach the end of a rotor sequence, we start from the beginning.
The overall traversal stops whenever we reach the last unvisited vertex.

This problem is concerned with rotor traversals of trees, so let’s take a look at the tree from the below
example. Vertex 1 is connected to vertices 5 and 4, its rotor sequence is [5, 4]. Vertex 2 is connected
only to vertex 4, its rotor sequence is [4]. Vertex 3 is connected only to vertex 4, its rotor sequence is [4].
Vertex 4 is connected to vertices 1, 2 and 3, its rotor sequence is [1, 3, 2]. Vertex 5 is connected only to
vertex 1, its rotor sequence is [1]. The rotor traversal starting from vertex 1 is: 1, 5, 1, 4, 1, 5, 1, 4, 3, 4,
2.

Given a tree (a connected graph without cycles), you need to choose rotor sequences for it. What is the
minimal and maximal possible number of steps in a rotor traversal starting from vertex 1?

Input

The first line of the input file contains n, 1 ≤ n ≤ 100. The next n − 1 lines describe edges, each with
two 1-based indices of the nodes that the edge connects, separated with a space.

Output

Output two descriptions of rotor sequences, one for the minimal number of steps and one for the maximal
number of steps, separated with a blank line.

Each description should start with the sought number of steps on a line by itself, followed by n lines
describing the rotor sequences. The i-th of those lines should describe the rotor sequence for the i-th
vertex, listing the numbers of vertices that are connected to it in the required sequence, separated by
spaces.

Examples

rotor.in rotor.out

5

4 1

5 1

2 4

3 4

7

5 4

4

4

3 2 1

1

11

5 4

4

4

1 3 2

1

Page 7 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem G. Possible Shifts
Input file: shifts.in

Output file: shifts.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Andrew is studying classical substring matching. More formally, the problem he is studying is: given two
strings s and t, find all shifts i such that the substring of t starting with character number i and of the
same length as s is equal to s.

Andrew is trying to invent a new, fast algorithm for solving that problem. The key idea of the algo-
rithm will be: we might need to compare just a few characters to reduce the number of possible shifts
significantly. You need to help him quantify “significantly”.

You are given several facts of the form si = tj, meaning that i-th (1-based) character of s is equal to j-th
(1-based) character of t, and si 6= tj, meaning that the i-th (1-based) character of s is not equal to the
j-th (1-based) character of t. How many shifts i are possible shifts? We define a possible shift as such
shift that a match of s in this position of t is still possible given the facts. You may assume that the
number of possible characters is very big.

Note that when the input data contains a contradiction, no shifts are possible, so the answer is 0.

Input

The first line of the input file contains three integers n, ls, lt, 0 ≤ n ≤ 100, 1 ≤ ls ≤ lt ≤ 109. n is the
number of the facts given to you, ls is the length of s and lt is the length of t. The next n lines contain
the facts. Each line contains an index i, 1 ≤ i ≤ ls followed by space, followed by character “=” or “!” ,
followed by a space, followed by an index j, 1 ≤ j ≤ lt. Such line means that the i-th (1-based) character
of s is equal (in case of “=”) or not equal (in case of “!”) to the j-th (1-based) character of t.

Output

Output the number of the possible shifts given the facts.

Examples

shifts.in shifts.out

6 3 10

1 ! 1

1 = 10

2 = 10

3 = 10

1 ! 5

1 ! 8

1

Page 8 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem H. Small Graph

Input file: small-graph.in

Output file: small-graph.out

Time limit: 2 seconds
Memory limit: 256 megabytes

Consider a permutation p1, p2, . . . , pn of integers between 1 and n. A directed graph G with at least n

vertices is called an inversion graph of that permutation when for any i, j such that 1 ≤ i, j ≤ n, i 6= j

the j-th vertex of G is reachable via some path from the i-th vertex of G if and only if i < j and pi > pj

(such pair is called an inversion of the permutation).

Naturally, there exist many inversion graphs for each permutation. You need to find a relatively small
one: the graph must contain at most 30n vertices and at most 30n edges.

Input

The first line of the input file contains one integer n, 1 ≤ n ≤ 1000, denoting the size of the permutation.
The second line of the input file contains the permutation itself.

Output

In the first line of the output file, print two integers v and a — the number of vertices and arcs of the
graph, respectively. The next a lines should contain the arcs. Each arc should be described by two vertex
numbers (between 1 and v) — the source and destination of the arc.

The number v should be at least n and at most 30n, a should be at least 0 and at most 30n.

Examples

small-graph.in small-graph.out

4

3 4 1 2

5 4

1 5

2 5

5 3

5 4

Page 9 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Problem I. High Speed

Input file: speed.in

Output file: speed.out

Time limit: 2 seconds
Memory limit: 256 megabytes

One of the most common elements of driving is the 90-degree turn. We will define such turn as a
combination of two roads that intersect at the right angle, as in the following picture:

w1

w2

A car can drive along any path that is a smooth sequence of straight line segments and circular arcs. We
define smooth as: whenever two different parts of a path meet, they must have the same direction vector
in the meeting point.

We need to find a path from far far away on the left road to far far away on the bottom road. We define
the turning radius of a path as the smallest radius of all arcs on the path.

What is the largest possible turning radius of a path through the given corner?

Input

The only line of the input file contains two integers w1 and w2, denoting the width of the left road and
the width of the bottom road, respectively. 1 ≤ w1, w2 ≤ 100.

Output

Output one floating-point value: the largest possible turning radius that still allows to drive through the
given corner. Your answer will be considered correct when it’s within 10−9 relative error of the right
answer.

Examples

speed.in speed.out

10 10 34.14213562373095

Note

Here’s one of the possible optimal paths for the example:

Page 10 of 11



Petr Mitrichev Contest 8

Petrozavodsk, February 7, 2011

Page 11 of 11


