Изменения

Перейти к: навигация, поиск

Обсуждение:Факторизация графов

471 байт добавлено, 21:24, 29 декабря 2019
Задача о поиске произвольного f-фактора
|definition = Пусть задана функция <tex>f : V(G) \rightarrow \mathbb{N}</tex>, такая что <tex>\forall~v \in V(G):f(v)\leq \text{deg}(v)</tex>. Тогда остовный подграф <tex>G_f</tex> в котором степень каждой вершины <tex>v</tex> равна <tex>f(v)</tex> называется '''<tex>f</tex>-фактором'''.
}}
 
 
[[Файл:1-A-general-graph-G-with-a-3-regular-factor-2-A-general-graph-G-with-an-f-factor (1).png|700px|thumb|centre| Примеры факторов в графе: (1) {{---}} <tex>3</tex>-фактор, (2) {{---}} <tex>f</tex>-фактор (значения <tex>f(v)</tex> указаны возле вершин)]]
 
== Задача о поиске произвольного <tex>f</tex>-фактора ==
 
Сведем задачу о поиске <tex>f</tex>-фактора к задаче о поиске наибольшего паросочетания.
Пусть дан граф <tex>G</tex> и функция <tex>f : V(G) \rightarrow \mathbb{N}</tex>. Построим граф <tex>G^*</tex> следующим образом.
# Для каждого ребра <tex>(u,w)\in E(G)</tex> добавим в граф <tex>G^*</tex> две новых вершины по одной новой вершине в множества <tex>eS(u)</tex> и <tex>eS(w)</tex>, соответствующие и соединим их ребром <tex>(e(u</tex> и <tex>),e(w))</tex>, и соединим их ребром. В результате каждой вершине <tex>v \in V(G)</tex> будет соответствовать множество <tex>S(v) \subset V(G_fG^*)</tex> такое что <tex>|S(v)|=deg(v)</tex>; Каждому ребру <tex>(u,w) \in E(G)</tex> соответствует будет соответствовать ребро <tex>(e(u),e(w))</tex>, причем ни для каких двух ребер из <tex>E(G)</tex> концы соответствующих им ребер в <tex>G^*</tex> не пересекаются.
# Для каждой вершины <tex>v\in V(G)</tex> добавим в <tex>G^*</tex> новые <tex>deg(v)-f(v)</tex> вершин, образующие множество <tex>T(v)</tex>. Каждую вершину из <tex>T(v)</tex> свяжем ребром с каждой вершиной из <tex>S(v)</tex>. В результате для каждой вершины <tex>v \in V(G)</tex> Множество <tex>S(v)\cup T(v)</tex> образует полный двудольный граф.
{{Теорема
|statement =
Граф <tex>G</tex> имеет <tex>f</tex>-фактор тогда и только тогда, когда соответствующий данным графу <tex>G</tex> и функции <tex>f</tex> граф <tex>G^*</tex> имеет совершенное паросочетание.
|proof =
<tex>\Rightarrow</tex>
Пусть граф <tex>G</tex> имеет <tex>f</tex>-фактор <tex>G_f</tex>. Построим паросочетание <tex>M</tex> для графа <tex>G^*</tex> следующим образом:
# Для каждого ребра <tex>(u,w)\in G_f</tex> добавим в <tex>M</tex> соответствующее ему ребро из <tex>G^*</tex> . Теперь для каждой вершины <tex>v \in V(g)</tex> <tex>f(v)</tex> вершин из множества <tex>S(v)</tex> покрыты <tex>M</tex> .
# Для каждой вершины <tex>v \in V(g)</tex> пусть <tex>R(v)\subset S(v)</tex> {{- --}} множество вершин еще не покрытых <tex>M</tex>. <tex>R(v)\cup T(v)</tex> является полным двудольным графом, причем размер каждой из долей равен <tex>deg(v)-f(v)</tex>, следовательно этот граф имеет совершенное паросочетание <tex>M_v</tex>. Добавим каждое ребро из <tex>M_v</tex> в <tex>M</tex>.
В результате каждая вершина в <tex>G^*</tex> покрыта <tex>M</tex>, следовательно <tex>M</tex> является совершенным паросочетанием.
}}
Из доказательства напрямую следует, что задача о поиске произвольного для нахождения <tex>f</tex>-фактора графа <tex>G</tex> сводится к поиску совершенного паросочетания достаточно найти совершенное паросочетание в графе <tex>G^*</tex>. Т.к. <tex>G^*</tex> в общем случае не является двудольным, для решения этой задачи можно воспользваться [https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D1%81%D0%B6%D0%B0%D1%82%D0%B8%D1%8F_%D1%86%D0%B2%D0%B5%D1%82%D0%BA%D0%BE%D0%B2 Алгоритмом Эдмондса для поиска наибольшего паросочетания].
74
правки

Навигация