Поиск с помощью золотого сечения — различия между версиями
Строка 1: | Строка 1: | ||
− | '''Поиск с помощью золотого сечения''' (''Golden section search'') - это улучшение наивной реализации [[Троичный поиск|троичного поиска]], служащий для поиска минимума/максимума функции. При простом троичном поиске на каждой итерации функция вычисляется в двух точках. Метод же золотого сечения требует вычисления лишь в одной точке (за исключением первой итерации). За счет этого достигается | + | '''Поиск с помощью золотого сечения''' (''Golden section search'') - это улучшение наивной реализации [[Троичный поиск|троичного поиска]], служащий для поиска минимума/максимума функции. При простом троичном поиске на каждой итерации функция вычисляется в двух точках. Метод же золотого сечения требует вычисления лишь в одной точке (за исключением первой итерации). За счет этого достигается выигрыш в производительности. |
==Алгоритм== | ==Алгоритм== | ||
Строка 18: | Строка 18: | ||
Тогда: | Тогда: | ||
− | <tex> a + b = \phi c, a = \phi b, c = \phi b</tex>, откуда получаем <tex> \phi + 1 = \phi^2 \Rightarrow \phi = \frac{1 + \sqrt{5}}{2}</tex> (тот корень уравнения, который меньше нуля, по понятным | + | <tex> a + b = \phi c, a = \phi b, c = \phi b</tex>, откуда получаем <tex> \phi + 1 = \phi^2 \Rightarrow \phi = \frac{1 + \sqrt{5}}{2}</tex> (тот корень уравнения, который меньше нуля, по понятным причинам отбросили). |
Это число совпадает с золотым сечением. Отсюда название метода. | Это число совпадает с золотым сечением. Отсюда название метода. | ||
Строка 38: | Строка 38: | ||
::<tex>x_1 = lbound + \frac{rbound - lbound}{\phi + 1}</tex> | ::<tex>x_1 = lbound + \frac{rbound - lbound}{\phi + 1}</tex> | ||
::<tex>x_2 = rbound - \frac{rbound - lbound}{\phi + 1}</tex> | ::<tex>x_2 = rbound - \frac{rbound - lbound}{\phi + 1}</tex> | ||
− | ::и | + | ::и вычислим функцию на них: <tex>f_1 = f(x_1), f_2 = f(x_2)</tex> |
[[Файл:Nextsection.gif|thumb|380px|Старая точка x1 уже делит отрезок в нужном отношении, поэтому нет необходимости вычислять ее заново (красным отмечены новые значения точек).]] | [[Файл:Nextsection.gif|thumb|380px|Старая точка x1 уже делит отрезок в нужном отношении, поэтому нет необходимости вычислять ее заново (красным отмечены новые значения точек).]] | ||
:'''Шаг 2''': | :'''Шаг 2''': | ||
Строка 81: | Строка 81: | ||
На каждой итерации исследуемый отрезок сокращается в <tex>\phi</tex> раз и делается один расчет функции, до тех пор, пока не станет <tex>|L| < \varepsilon</tex>. Если считать, что одна итерация выполняется за 1 времени, то потребуется <tex> n </tex> операций, чтобы: <tex>L \cdot (\frac{1}{\phi})^n < \varepsilon \Rightarrow n = [log_{\phi}(\frac{L}{\varepsilon})]</tex>. | На каждой итерации исследуемый отрезок сокращается в <tex>\phi</tex> раз и делается один расчет функции, до тех пор, пока не станет <tex>|L| < \varepsilon</tex>. Если считать, что одна итерация выполняется за 1 времени, то потребуется <tex> n </tex> операций, чтобы: <tex>L \cdot (\frac{1}{\phi})^n < \varepsilon \Rightarrow n = [log_{\phi}(\frac{L}{\varepsilon})]</tex>. | ||
− | Значит время работы можно оценивать как <tex> log_{\phi}(\frac{L}{\varepsilon})</tex>. | + | Значит, время работы можно оценивать как <tex> log_{\phi}(\frac{L}{\varepsilon})</tex>. |
Если удельный вес вычисления функции <tex> f </tex> достаточно большой, тогда получим ускорение работы примерно в 2,3 раз по сравнению с неулучшенным троичным поиском. | Если удельный вес вычисления функции <tex> f </tex> достаточно большой, тогда получим ускорение работы примерно в 2,3 раз по сравнению с неулучшенным троичным поиском. | ||
Версия 20:28, 15 июня 2011
Поиск с помощью золотого сечения (Golden section search) - это улучшение наивной реализации троичного поиска, служащий для поиска минимума/максимума функции. При простом троичном поиске на каждой итерации функция вычисляется в двух точках. Метод же золотого сечения требует вычисления лишь в одной точке (за исключением первой итерации). За счет этого достигается выигрыш в производительности.
Содержание
Алгоритм
Рассмотрим одну итерацию алгоритма троичного поиска. Попробуем подобрать такое разбиение отрезка на три части, чтобы на следующей итерации одна из точек нового разбиения совпала с одной из точек текущего разбиения. Тогда в следующий раз не придется считать функцию в двух точках, так как в одной она уже была посчитана.
Точки
и разбивают отрезок на три части. Потребуем, чтобы одновременно выполнялось:
Где
- это некоторое отношение, в котором мы делим отрезок (точки и разбивают отрезок симметрично).Тогда:
, откуда получаем (тот корень уравнения, который меньше нуля, по понятным причинам отбросили).
Это число совпадает с золотым сечением. Отсюда название метода.
Для реализации алгоритма нам потребуется найти
и . Если - длина исследуемого отрезка, тогда:
Причем, заметим что в силу того что
- золотое сечение, то .Формально для поиска минимума (для максимума - делается аналогично) функции
делаем следующее:- Шаг 1:
- Определяем границы поиска и , затем устанавливаем текущее разбиение:
- и вычислим функцию на них:
- Шаг 2:
- если
- иначе:
- если
- Шаг 3:
- если точность нас устраивает, тогда останавливаемся, и искомая точка , иначе назад к шагу 2
Псевдокод
phi = (1 + sqrt(5)) / 2 resphi = 2 - phi goldenSectionSearch(f, lbound, rbound, eps) x1 = lbound + resphi * (rbound - lbound) x2 = rbound - resphi * (rbound - lbound) f1 = f(x1) f2 = f(x2) do if f1 < f2: rbound = x2 x2 = x1 f2 = f1 x1 = lbound + resphi * (rbound - lbound) f1 = f(x1) else: lbound = x1 x1 = x2 f1 = f2 x2 = rbound - resphi * (rbound - lbound) f2 = f(x2) while (abs(rbound - lbound) < eps) return (x1 + x2) / 2
Время работы
На каждой итерации исследуемый отрезок сокращается в
раз и делается один расчет функции, до тех пор, пока не станет . Если считать, что одна итерация выполняется за 1 времени, то потребуется операций, чтобы: .Значит, время работы можно оценивать как
. Если удельный вес вычисления функции достаточно большой, тогда получим ускорение работы примерно в 2,3 раз по сравнению с неулучшенным троичным поиском.См также
Ссылки
- Wikipedia - Golden section search (english)