Троичный поиск — различия между версиями
Rybak (обсуждение | вклад) |
Rybak (обсуждение | вклад) (→Алгоритм) |
||
| Строка 11: | Строка 11: | ||
Посчитаем значения функции в точках <tex> a = l + \frac{(r-l)}{3} </tex> и <tex> b = l + \frac{2(r-l)}{3} </tex>. | Посчитаем значения функции в точках <tex> a = l + \frac{(r-l)}{3} </tex> и <tex> b = l + \frac{2(r-l)}{3} </tex>. | ||
| − | Так как в точке <tex>x_{min}</tex> минимум, то на отрезке <tex>[l, x_{min}]</tex> функция | + | Так как в точке <tex>x_{min}</tex> минимум, то на отрезке <tex>[l, x_{min}]</tex> функция {{---}} выпуклая вниз. |
<tex> \forall x', x'' \in [l, r]: \\ | <tex> \forall x', x'' \in [l, r]: \\ | ||
Версия 00:39, 17 июня 2011
Троичный поиск (или тернарный поиск) — метод поиска минимума или максимума функции на отрезке.
Алгоритм
Рассмотрим этот алгоритм на примере поиска минимума (поиск максимума аналогичен).Пусть функция на отрезке имеет минимум, и мы хотим найти точку , в которой он достигается.
Посчитаем значения функции в точках и .
Так как в точке минимум, то на отрезке функция — выпуклая вниз.
.
Значит если , то , аналогично из следует . Тогда нам нужно изменить границы поиска и искать дальше, пока не будет достигнута необходимая точность, то есть .
Псевдокод
ternarySearchMin(f, l, r, eps)
if (r - l < eps)
return (left + right) / 2
a = (left * 2 + right) / 3
b = (left + right * 2) / 3
if (f(a) < f(b))
return ternarySearch(f, l, b, eps)
else
return ternarySearch(f, a, r, eps)
end
Возможен и нерекурсивный вариант:
ternarySearchMin(f, l, r, eps)
while (r - l < eps)
{
a = (left * 2 + right) / 3
b = (left + right * 2) / 3
if (f(a) < f(b))
r = b
else
l = a
}
return (left + right) / 2
end
Время работы
Так как на каждой итерации мы считаем два значения функции и уменьшаем область поиска в полтора раза, пока , то время работы алгоритма составит
Смотрите также
Есть оптимизация этого алгоритма, если делить отрезок не на равные части, а в отношении золотого сечения, — Поиск с помощью золотого сечения
Литература
Дональд Кнут Искусство программирования, том 3. Сортировка и поиск = The Art of Computer Programming, vol.3. Sorting and Searching.