Аксиоматизация матроида циклами — различия между версиями
Filchenko (обсуждение | вклад) м (косметика) |
Filchenko (обсуждение | вклад) (литература) |
||
Строка 27: | Строка 27: | ||
Итак, семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам матроида. Следовательно, существует матроид <tex>M(\mathbb E)</tex> на множестве <tex>\mathbb E</tex>, для которого семейство <tex>\mathfrak I</tex> является семейством независимых множеств. Из определения <tex>\mathfrak C</tex>-независимости легко следует, что семейство <tex>\mathfrak C</tex> совпадает с множеством цисклов матроида <tex>M(\mathbb E)</tex> | Итак, семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам матроида. Следовательно, существует матроид <tex>M(\mathbb E)</tex> на множестве <tex>\mathbb E</tex>, для которого семейство <tex>\mathfrak I</tex> является семейством независимых множеств. Из определения <tex>\mathfrak C</tex>-независимости легко следует, что семейство <tex>\mathfrak C</tex> совпадает с множеством цисклов матроида <tex>M(\mathbb E)</tex> | ||
}} | }} | ||
+ | |||
+ | |||
+ | == Литература == | ||
+ | ''Асанов М. О., Баранский В. А., Расин В. В.'' - Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2'''<br /> |
Версия 00:38, 26 июня 2011
Теорема (Аксиоматизация матроида циклами): |
Пусть — семейство подмножеств конечного непустого множетва такое, что:
|
Доказательство: |
Пусть семейство удовлетворяет условию теоремы. Множество назовем -независимым, если оно не содержит ни одного из множеств . Через обозначим семейство всех -независимых множеств, содержащихся в . Проверим, что семейство удовлетворяет аксиомам из определения матроида.Поскольку , имеем , и первая аксиома, очевидно, выполняется.Очевидно, что если и то , и, следовательно, вторая аксиома выполнена.Проверим справедливость третьей аксиомы для семейства . Предположим, что существуют множества такие, что , для которых третья аксиома не выполнена. Среди всех таких пар выберем ту, у которой мощность минимальна. Положим . Если , то, очевидно, и аксиома выполняется. Поэтому достаточно рассмотреть .В силу нашего предположения для любого . Следовательно, существует такое, что и в силу -независимости множества имеем для любого . Ясно, что множества попарно различны.Рассмотрим множество . Для него верно . В силу -независимости существует такой, что . Рассмотрим теперь множество .Если , то существует , для которого существует такой , что . Пришли к противоречию с условием .Пусть Итак, семейство . Заметим, что . Поэтому в силу выбора пары для пары существует элемент , где , такой, что . Возьмем множество . Для него выполняется . Если , то , что невозможно. Следовательно, и . Тогда по 3 пункуту теоремы, существует , для которого , которое равно , что невозможно. удовлетворяет аксиомам матроида. Следовательно, существует матроид на множестве , для которого семейство является семейством независимых множеств. Из определения -независимости легко следует, что семейство совпадает с множеством цисклов матроида |
Литература
Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2