Примеры матроидов — различия между версиями
(→Графовый матроид) |
Kasetkin (обсуждение | вклад) |
||
Строка 18: | Строка 18: | ||
Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. | Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. | ||
− | 3) <tex> | + | 3) <tex>| A | < | B | \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex> |
− | Пусть не так. Тогда <tex>\forall x \in B \setminus A</tex> множество векторов <tex>A \cup \mathcal{f} x \mathcal {g}</tex> - линейно зависимо. Значит оно образует базис в пространстве векторов <tex>U</tex> "натянутом" на множество векторов <tex>A \cup B</tex>. Но тогда <tex> | + | Пусть не так. Тогда <tex>\forall x \in B \setminus A</tex> множество векторов <tex>A \cup \mathcal{f} x \mathcal {g}</tex> - линейно зависимо. Значит оно образует базис в пространстве векторов <tex>U</tex> "натянутом" на множество векторов <tex>A \cup B</tex>. Но тогда <tex>| A \cup \mathcal{f} x \mathcal {g} | > | B | </tex>, так как мощность базиса больше мощности любого линейно-независимого множества, а <tex>B</tex> - линейно-независимо. Противоречие с условием. По условию <tex>| A | + 1 \leq | B | </tex>. |
}} | }} | ||
Строка 41: | Строка 41: | ||
Очевидно, что любой подграф леса, так же является лесом, а значит входит в <tex>I</tex> вследствие своей ацикличности. | Очевидно, что любой подграф леса, так же является лесом, а значит входит в <tex>I</tex> вследствие своей ацикличности. | ||
− | 3) <tex> | + | 3) <tex>| A | < | B | \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex> |
В графе <tex>G_A = \langle V, A \rangle </tex> как минимум две компоненты связанности, иначе <tex>G_A</tex> являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. | В графе <tex>G_A = \langle V, A \rangle </tex> как минимум две компоненты связанности, иначе <tex>G_A</tex> являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. | ||
− | Допустим в <tex>B</tex> не существует ребра, соединяющего две различные компоненты связанности из <tex>G_A</tex>, значит любая компонента связанности из <tex>G_B</tex> целиком вершинно-входит в какую-либо компоненту из <tex>G_A</tex>. Рассмотрим любую компоненту связанности Q из <tex>G_A</tex>, у неё <tex>k</tex> вершин и <tex>k - 1</tex> рёбер. Теперь рассмотрим все компоненты связанности <tex>P_i</tex> из <tex>G_B</tex> вершинно-входящие в <tex>Q</tex>, пусть их <tex>m</tex> штук, тогда суммарное кол-во рёбер из равно <tex>k - m</tex> что не превосходит <tex>k - 1</tex> (кол-во рёбер в <tex>Q</tex>). Просуммируем неравенство по всем компонентам связанности из <tex>G_A</tex> и получим <tex> | + | Допустим в <tex>B</tex> не существует ребра, соединяющего две различные компоненты связанности из <tex>G_A</tex>, значит любая компонента связанности из <tex>G_B</tex> целиком вершинно-входит в какую-либо компоненту из <tex>G_A</tex>. Рассмотрим любую компоненту связанности Q из <tex>G_A</tex>, у неё <tex>k</tex> вершин и <tex>k - 1</tex> рёбер. Теперь рассмотрим все компоненты связанности <tex>P_i</tex> из <tex>G_B</tex> вершинно-входящие в <tex>Q</tex>, пусть их <tex>m</tex> штук, тогда суммарное кол-во рёбер из равно <tex>k - m</tex> что не превосходит <tex>k - 1</tex> (кол-во рёбер в <tex>Q</tex>). Просуммируем неравенство по всем компонентам связанности из <tex>G_A</tex> и получим <tex>| A | \ge | B |</tex> что противоречит условию. Значит предположение не верно и в <tex>B</tex> существует искомое ребро <tex>x</tex> из разных компонент связанности <tex>G_B</tex>. |
}} | }} | ||
Строка 52: | Строка 52: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть <tex>G = \langle X, Y, E \rangle</tex> - двудольный граф. Тогда <tex>M = \langle X, I = \mathcal{f} A \subset X | + | Пусть <tex>G = \langle X, Y, E \rangle</tex> - двудольный граф. Тогда <tex>M = \langle X, I = \mathcal{f} A \subset X | \exists </tex> паросочетание <tex> M: X \cap ends(M) = A \mathcal {g} \rangle </tex> называют '''трансверсальным матроидом.''' |
}} | }} | ||
Строка 68: | Строка 68: | ||
Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания <tex>M</tex> ребра, концами которых являются вершины из множества <tex>B \setminus A</tex>. Оставшееся множество ребер будет являться паросочетанием, которое обозначим за <tex>M'</tex>. И будет выполняться условие <tex> X \cap ends(M') = A </tex> , что значит, <tex> A \in I </tex>. | Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания <tex>M</tex> ребра, концами которых являются вершины из множества <tex>B \setminus A</tex>. Оставшееся множество ребер будет являться паросочетанием, которое обозначим за <tex>M'</tex>. И будет выполняться условие <tex> X \cap ends(M') = A </tex> , что значит, <tex> A \in I </tex>. | ||
− | 3) <tex> | + | 3) <tex>| A | < | B | \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex> |
Раскрасим ребра из паросочетания, соответствующего <tex> B </tex> в синий цвет, а соответствующего <tex> A </tex> — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится <tex> |B \setminus A| </tex> ребер синего цвета, <tex> |A \setminus B| </tex> ребер красного цвета, и будет выполняться соотношение <tex> |B \setminus A| > |A \setminus B|</tex>. Рассмотрим подграф <tex> H </tex>, индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь <tex> H' </tex>. Поменяем в <tex> H' </tex> синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид <tex>A \cup \mathcal{f} x \mathcal {g} </tex>, где <tex> x \in B \setminus A </tex>. Что значит, что <tex> A \cup \mathcal{f} x \mathcal {g} \in I</tex>. | Раскрасим ребра из паросочетания, соответствующего <tex> B </tex> в синий цвет, а соответствующего <tex> A </tex> — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится <tex> |B \setminus A| </tex> ребер синего цвета, <tex> |A \setminus B| </tex> ребер красного цвета, и будет выполняться соотношение <tex> |B \setminus A| > |A \setminus B|</tex>. Рассмотрим подграф <tex> H </tex>, индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь <tex> H' </tex>. Поменяем в <tex> H' </tex> синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид <tex>A \cup \mathcal{f} x \mathcal {g} </tex>, где <tex> x \in B \setminus A </tex>. Что значит, что <tex> A \cup \mathcal{f} x \mathcal {g} \in I</tex>. | ||
Строка 76: | Строка 76: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Универсальным матроидом''' называют объект <tex>U_n,_k = \langle X = \{1, 2, 3, ..., n\}, I = \mathcal{f} A \subset X | | + | '''Универсальным матроидом''' называют объект <tex>U_n,_k = \langle X = \{1, 2, 3, ..., n\}, I = \mathcal{f} A \subset X | | A | \leq k\} \rangle </tex> |
}} | }} | ||
Строка 86: | Строка 86: | ||
1) <tex>\varnothing \in I</tex> | 1) <tex>\varnothing \in I</tex> | ||
− | <tex> | + | <tex> | \varnothing | = 0 \leq k \Rightarrow \varnothing \in I</tex> |
2) <tex>A \subset B, B \in I \Rightarrow A \in I</tex> | 2) <tex>A \subset B, B \in I \Rightarrow A \in I</tex> | ||
− | <tex> | + | <tex> | A | \leq | B | \leq k \Rightarrow | A | \leq k \Rightarrow A \in I </tex> |
− | 3) <tex> | + | 3) <tex>| A | < | B | \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex> |
− | Так как <tex> | + | Так как <tex>| A | < | B | </tex> и числа в каждом множестве различны, найдётся такое число <tex> x \in B </tex>, которое не будет принадлежать меньшему по мощности множеству <tex> A </tex>. |
− | Рассмотрим <tex> A \cup \mathcal{f} x \mathcal {g} </tex>. <tex> | + | Рассмотрим <tex> A \cup \mathcal{f} x \mathcal {g} </tex>. <tex>| A | < | B | \Rightarrow | A \cup \mathcal{f} x \mathcal {g} | = | A | + 1 \leq | B | \leq k \Rightarrow A \cup \mathcal{f} x \mathcal {g} \in I</tex> |
}} | }} |
Версия 19:55, 27 июня 2011
Матричный матроид
Определение: |
Пусть | - векторное пространство над телом , пусть набор векторов из пространства является носителем . Элементами независимого множества данного матроида являются множества линейно-независимых векторов из набора . Тогда , называется матричным матроидом
Лемма: |
Матричный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Множество в котором нет векторов является линейно-независимым. 2) Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. 3) Пусть не так. Тогда множество векторов - линейно зависимо. Значит оно образует базис в пространстве векторов "натянутом" на множество векторов . Но тогда , так как мощность базиса больше мощности любого линейно-независимого множества, а - линейно-независимо. Противоречие с условием. По условию . |
Графовый матроид
Определение: |
Пусть | - неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом.
Лемма: |
Графовый матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в .2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в вследствие своей ацикличности.3) В графе Допустим в как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности Q из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из вершинно-входящие в , пусть их штук, тогда суммарное кол-во рёбер из равно что не превосходит (кол-во рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим что противоречит условию. Значит предположение не верно и в существует искомое ребро из разных компонент связанности . |
Трансверсальный матроид
Определение: |
Пусть | - двудольный граф. Тогда паросочетание называют трансверсальным матроидом.
Лемма: |
Трансверсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, которое обозначим за . И будет выполняться условие , что значит, .3) Раскрасим ребра из паросочетания, соответствующего в синий цвет, а соответствующего — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится ребер синего цвета, ребер красного цвета, и будет выполняться соотношение . Рассмотрим подграф , индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь . Поменяем в синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид , где . Что значит, что . |
Универсальный матроид
Определение: |
Универсальным матроидом называют объект |
Лемма: |
Универсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1)
2)
3) Так как Рассмотрим и числа в каждом множестве различны, найдётся такое число , которое не будет принадлежать меньшему по мощности множеству . . |