Поиск k-ой порядковой статистики за линейное время — различия между версиями
Niko (обсуждение | вклад) м |
м (→Историческая справка) |
||
Строка 5: | Строка 5: | ||
== Историческая справка == | == Историческая справка == | ||
− | '''Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна''' (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и | + | '''Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна''' (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и Робертом Тарьяном (Robert Tarjan) в 1973 году. |
== Описание алгоритма == | == Описание алгоритма == |
Версия 20:30, 25 августа 2011
Определение: |
-ой порядковой статистикой набора элементов линейно упорядоченного множества называется такой его элемент, который является -ым элементом набора в порядке сортировки |
Историческая справка
Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и Робертом Тарьяном (Robert Tarjan) в 1973 году.
Описание алгоритма
Разбиваем наш массив на группы по 5 элементов (на самом деле можно разбивать и на другое нечетное количество элементов, больших 5). Затем в каждой группе находим средний элемент (медиану), это можно сделать любой сортировкой. И запускаем рекурсивно этот алгоритм от медиан. Тем самым мы найдем средний элемент среди медиан, то есть медиану медиан. Эту медиану медиан выберем рассекающим элементом для поиска
-го элемента. Далее разбиваем массив на две части: слева от рассекающего элемента числа меньшие него, а справа - числа больше рассекающего элемента или равные ему. И рекурсивно запускаем наш алгоритм от той части массива, в которой будет лежать -й элемент.Анализ времени работы алгоритма
Пусть
- время работы алгоритма для элементов, тогда оно не больше, чем сумма:- времени работы на сортировку групп и разбиение по рассекающему элементу, то есть ;
- времени работы для поиска медианы медиан, то есть ;
- времени работы для поиска -го элемента в одной из двух частей массива, то есть , где - количество элементов в этой части. Но не превосходит , так как чисел, меньших рассекающего элемента, не менее - это медиан, меньших медианы медиан, плюс не менее элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее , следовательно , то есть в худшем случае .
Тогда получаем, что
Покажем, что для всех
выполняется неравенство .Докажем по индукции:
- Очевидно, что для малых выполняется неравенство
- Тогда, по предположению индукции, и , тогда
Так как
, то время работы алгоритма