Сведение задачи о назначениях к задаче о потоке минимальной стоимости — различия между версиями
(→Постановка задачи) |
|||
Строка 1: | Строка 1: | ||
== Постановка задачи == | == Постановка задачи == | ||
− | * Дана квадратная матрица <tex>A_{N\times N}</tex>. Нужно выбрать в ней <tex>N</tex> элементов так, чтобы в каждой строке и столбце был выбран только один элемент, а сумма значений этих элементов была наименьшей. | + | * Дана квадратная матрица <tex>A_{N\times N}</tex>. Нужно выбрать в ней <tex>N</tex> элементов так, чтобы в каждой строке и в каждом столбце был выбран только один элемент, а сумма значений этих элементов была наименьшей. |
* Имеется <tex>N</tex> заказов и <tex>N</tex> станков. Про каждый заказ известна стоимость его изготовления на каждом станке. На каждом станке можно выполнять только один заказ. Требуется распределить все заказы по станкам так, чтобы минимизировать суммарную стоимость. | * Имеется <tex>N</tex> заказов и <tex>N</tex> станков. Про каждый заказ известна стоимость его изготовления на каждом станке. На каждом станке можно выполнять только один заказ. Требуется распределить все заказы по станкам так, чтобы минимизировать суммарную стоимость. | ||
Версия 00:18, 26 сентября 2011
Содержание
Постановка задачи
- Дана квадратная матрица . Нужно выбрать в ней элементов так, чтобы в каждой строке и в каждом столбце был выбран только один элемент, а сумма значений этих элементов была наименьшей.
- Имеется заказов и станков. Про каждый заказ известна стоимость его изготовления на каждом станке. На каждом станке можно выполнять только один заказ. Требуется распределить все заказы по станкам так, чтобы минимизировать суммарную стоимость.
Сведение к задаче о потоке минимальной стоимости
Построим двудольный граф
следующим образом:- Имеется исток и сток .
- В первой доле находятся вершин, соответствующие строкам матрицы или заказам.
- Во второй вершин, соответствующие столбцам матрицы или станкам.
- Между каждой вершиной первой доли и каждой вершиной второй доли проведём ребро с пропускной способностью 1 и стоимостью .
- От истока проведём рёбра ко всем вершинам первой доли с пропускной способностью 1 и стоимостью 0.
- От каждой вершины второй доли к стоку проведём ребро с пропускной способностью 1 и стоимостью 0.
Найдём в полученном графе поток минимальной стоимости.
Понятно, что величина потока будет равна . Заметим, что для каждой вершины из первой доли найдётся только одна вершина из второй доли, такая, что поток . Поскольку найденный поток имеет минимальную стоимость, то сумма стоимостей выбранных рёбер будет наименьшей из возможных. Поэтому, это взаимно однозначное соответствие между вершинами первой доли и вершинами второй доли является решением задачи.
Асимптотика
Асимптотика этого решения равна асимптотике алгоритма, выбранного для поиска потока.