Суффиксный бор — различия между версиями
Строка 12: | Строка 12: | ||
==Хранение в памяти== | ==Хранение в памяти== | ||
Пусть <tex>s \in \Sigma^*</tex>, <tex>\lvert s\rvert = n</tex>. Из третьего свойства следует, что для хранения суффиксного бора в худшем случае потребуется <tex>O(n^2 |\Sigma|)</tex> памяти. Если не хранить массив переходов по символам для вершин, где такой переход единственный, то можно получить оценку <tex>O(n^2 + n|\Sigma|)</tex>. Улучшением суффиксного бора, расходующим всего <tex>O( n|\Sigma|)</tex> памяти, является [[сжатое суффиксное дерево]]. | Пусть <tex>s \in \Sigma^*</tex>, <tex>\lvert s\rvert = n</tex>. Из третьего свойства следует, что для хранения суффиксного бора в худшем случае потребуется <tex>O(n^2 |\Sigma|)</tex> памяти. Если не хранить массив переходов по символам для вершин, где такой переход единственный, то можно получить оценку <tex>O(n^2 + n|\Sigma|)</tex>. Улучшением суффиксного бора, расходующим всего <tex>O( n|\Sigma|)</tex> памяти, является [[сжатое суффиксное дерево]]. | ||
+ | |||
+ | [[Категория:Алгоритмы и структуры данных]] | ||
+ | [[Категория:Словарные структуры данных]] |
Версия 05:44, 26 сентября 2011
Суффиксный бор (англ. suffix trie) — бор, содержащий все суффиксы данной строки.
По определению, в суффиксном боре для строки
(где ) содержатся все строки . Сделаем следующее наблюдение: если в суффиксном боре находится строка , то все ее префиксы уже содержатся в нашем боре. Значит, суффиксный бор можно использовать для поиска всех подстрок строки (чтобы бор формально содержал все подстроки , нужно пометить все его вершины терминальными, при этом корень будет соответствовать пустой строке ).Свойства
Суффиксный бор для строки
:- Можно использовать для поиска образца в строке за время .
- Можно построить за время , последовательно добавив все суффиксы .
- Имеет порядка вершин.
Хранение в памяти
Пусть сжатое суффиксное дерево.
, . Из третьего свойства следует, что для хранения суффиксного бора в худшем случае потребуется памяти. Если не хранить массив переходов по символам для вершин, где такой переход единственный, то можно получить оценку . Улучшением суффиксного бора, расходующим всего памяти, является