Пересечение матроидов, определение, примеры — различия между версиями
| Строка 9: | Строка 9: | ||
2) Пусть <tex>G</tex> - двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа. | 2) Пусть <tex>G</tex> - двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа. | ||
| + | |||
| + | [[Категория:Алгоритмы и структура данных]] | ||
| + | [[Категория:Матроиды]] | ||
Версия 09:29, 1 октября 2011
| Определение: |
| Пусть даны два матроида и . Пересечением матроидов и называется пара , где - носитель исходных матроидов, а . |
Примеры
1) - графовый матроид, - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests)
2) Пусть - двудольный граф и заданы два матроида , , где - множество ребёр графа, , . Тогда их пересечение - это множество всевозможных паросочетаний графа.