Пересечение матроидов, определение, примеры — различия между версиями
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Пусть даны два матроида <tex>M_1 = \langle X, I_1\rangle</tex> и <tex>M_2 = \langle X, I_2 \rangle</tex>. '''Пересечением матроидов''' <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, I \rangle</tex>, где <tex>X</tex> | + | Пусть даны два матроида <tex>M_1 = \langle X, I_1\rangle</tex> и <tex>M_2 = \langle X, I_2 \rangle</tex>. '''Пересечением матроидов''' <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, I \rangle</tex>, где <tex>X</tex> — носитель исходных матроидов, а <tex> I = I_1 \cap I_2</tex>. |
}} | }} | ||
==Примеры== | ==Примеры== | ||
− | + | # <tex>M_1</tex> — графовый матроид, <tex>M_2</tex> — "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение — это разноцветный лес (англ. rainbow forests). | |
− | + | # Пусть <tex>G</tex> — двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> — множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение — это множество всевозможных паросочетаний графа. | |
− | |||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Матроиды]] | [[Категория:Матроиды]] |
Версия 07:35, 12 октября 2011
Определение: |
Пусть даны два матроида | и . Пересечением матроидов и называется пара , где — носитель исходных матроидов, а .
Примеры
- — графовый матроид, — "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение — это разноцветный лес (англ. rainbow forests).
- Пусть — двудольный граф и заданы два матроида , , где — множество ребёр графа, , . Тогда их пересечение — это множество всевозможных паросочетаний графа.