Теорема Хватала — различия между версиями
Vincent (обсуждение | вклад) |
Vincent (обсуждение | вклад) |
||
| Строка 1: | Строка 1: | ||
| − | Дан [[Основные определения теории графов|граф]] <tex> G </tex>, состоящий из <tex>\ n </tex> [[Основные определения теории графов|вершин]], <tex>\ d_i </tex> | + | Дан [[Основные определения теории графов|граф]] <tex> G </tex>, состоящий из <tex>\ n </tex> [[Основные определения теории графов|вершин]], <tex>\ d_i </tex> — [[Основные определения теории графов|степень]] <tex>\ i </tex> - ой вершины. <br> |
Все <tex>\ d_i </tex> расположены в порядке неубывания. <br> | Все <tex>\ d_i </tex> расположены в порядке неубывания. <br> | ||
<tex>\ (*): </tex> <tex>\forall k</tex> верна импликация <tex>(d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k)</tex> <br> | <tex>\ (*): </tex> <tex>\forall k</tex> верна импликация <tex>(d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k)</tex> <br> | ||
| Строка 9: | Строка 9: | ||
Верно и обратное утверждение. | Верно и обратное утверждение. | ||
|proof= | |proof= | ||
| − | Так как <tex>\ d_1 \le d_2 \le ... \le d_k </tex>, то уже есть <tex>\ k </tex> вершин, степень которых не превосходит <tex>\ k </tex>. Если степени некоторых вершин, следующих за <tex>\ k </tex> равны <tex>\ d_k </tex>, то число вершин, удовлетворяющих требованию, превышает <tex>\ k </tex>. <br> | + | Так как <tex>\ d_1 \le d_2 \le ... \le d_k </tex>, то уже есть <tex>\ k </tex> вершин, степень которых не превосходит <tex>\ k </tex>. Если степени некоторых вершин, следующих за <tex>\ k </tex>, равны <tex>\ d_k </tex>, то число вершин, удовлетворяющих требованию, превышает <tex>\ k </tex>. <br> |
Доказательство в обратную сторону: <br> | Доказательство в обратную сторону: <br> | ||
Пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k + p (p \ge 0) </tex> вершин имеют степень не больше <tex>\ k </tex>. | Пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k + p (p \ge 0) </tex> вершин имеют степень не больше <tex>\ k </tex>. | ||
| Строка 23: | Строка 23: | ||
Верно и обратное утверждение. | Верно и обратное утверждение. | ||
|proof= | |proof= | ||
| − | Так как <tex>\ d_{n-k} \le d_{n-k+1} \le .... \le d_n </tex> и <tex>\ d_{n-k} \ge n-k </tex>, то мы уже получаем <tex>\ d_{n-k}, d_{n-k+1}, ...., d_n = k + 1 </tex> | + | Так как <tex>\ d_{n-k} \le d_{n-k+1} \le .... \le d_n </tex> и <tex>\ d_{n-k} \ge n-k </tex>, то мы уже получаем <tex>\ d_{n-k}, d_{n-k+1}, ...., d_n = k + 1 </tex> вершин, удовлетворяющих нашему требованию. Если степени некоторых вершин, предшествующих <tex>\ n-k </tex>, равны <tex>\ d_{n-k} </tex>, то число вершин, подходящих нашему требованию, превышает <tex>\ k+1 </tex> <br> |
Доказательство в обратную сторону: <br> | Доказательство в обратную сторону: <br> | ||
Пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k+p (p > 0)</tex> вершин имеют степень не меньше <tex>\ n-k </tex>. Расположим вершины в неубывающем порядке их степеней. Получим : <tex>\ d_n \ge n-k, d_{n-1} \ge n-k, ..., d_{n-k} \ge n-k, ... , d_{n-k-p+1} \ge n-k </tex>. Если <tex> p = 1 </tex>, то <tex> n-k-p+1 = n-k </tex>. Отсюда видно, что <tex>\ d_{n-k} \ge n-k </tex>. | Пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k+p (p > 0)</tex> вершин имеют степень не меньше <tex>\ n-k </tex>. Расположим вершины в неубывающем порядке их степеней. Получим : <tex>\ d_n \ge n-k, d_{n-1} \ge n-k, ..., d_{n-k} \ge n-k, ... , d_{n-k-p+1} \ge n-k </tex>. Если <tex> p = 1 </tex>, то <tex> n-k-p+1 = n-k </tex>. Отсюда видно, что <tex>\ d_{n-k} \ge n-k </tex>. | ||
| Строка 33: | Строка 33: | ||
III | III | ||
|statement= | |statement= | ||
| − | Пусть <tex>\ (*) </tex> выполнена для последовательности <tex>\ d_1, d_2, ... , d_n </tex>. | + | # Пусть <tex>\ (*) </tex> выполнена для последовательности <tex>\ d_1, d_2, ... , d_n </tex>. |
| − | Пусть <tex>\ d_1 \le d_1' , ... , d_n \le d_n' </tex>. | + | # Пусть <tex>\ d_1 \le d_1' , ... , d_n \le d_n' </tex>. |
Тогда <tex>\ (*) </tex> выполнена и для <tex>\ d_1', ... , d_n' </tex> | Тогда <tex>\ (*) </tex> выполнена и для <tex>\ d_1', ... , d_n' </tex> | ||
}} | }} | ||
| + | <br> | ||
{{Лемма | {{Лемма | ||
|about= | |about= | ||
IV | IV | ||
|statement= | |statement= | ||
| − | + | Если условие <tex>\ (*) </tex> верно для некоторой последовательности степеней, то оно верно и для мажорирующей её последовательности. | |
}} | }} | ||
| + | <br> | ||
{{Теорема | {{Теорема | ||
|about= | |about= | ||
Хватал | Хватал | ||
|statement= | |statement= | ||
| − | Пусть <tex> G </tex> | + | Пусть <tex> G </tex> — [[Отношение связности, компоненты связности|связный граф]], количество вершин которого не меньше 3. Упорядочим степени вершин <tex>\ G </tex> по неубыванию. |
| − | Если для <tex>\forall k</tex> верна импликация <tex>(d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k) </tex> <tex> (*) </tex>, то <tex> G </tex> | + | Если для <tex>\forall k</tex> верна импликация <tex>(d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k) </tex> <tex> (*) </tex>, то <tex> G </tex> — [[Гамильтоновы графы|гамильтонов]]. |
|proof= | |proof= | ||
Приведем доказательство от противного. | Приведем доказательство от противного. | ||
| Строка 56: | Строка 58: | ||
Очевидно, что граф <tex>\ K_n </tex> гамильтонов для <tex>\ k \ge 3 </tex>. | Очевидно, что граф <tex>\ K_n </tex> гамильтонов для <tex>\ k \ge 3 </tex>. | ||
Будем считать <tex> G </tex> максимальным негамильтоновым остовным подграфом графа <tex>\ K_n </tex>. | Будем считать <tex> G </tex> максимальным негамильтоновым остовным подграфом графа <tex>\ K_n </tex>. | ||
| − | Выберем две несмежные вершины <tex> u </tex> и <tex> v </tex> графа <tex> G </tex> с условием : <tex> \deg u + \deg v </tex> | + | Выберем две несмежные вершины <tex> u </tex> и <tex> v </tex> графа <tex> G </tex> с условием : <tex> \deg u + \deg v </tex> — максимально. |
Будем считать, <tex>\deg u \le \deg v </tex>. | Будем считать, <tex>\deg u \le \deg v </tex>. | ||
Добавив к <tex> G </tex> новое ребро <tex> e = uv </tex>, получим гамильтонов граф <tex> G + e</tex>. | Добавив к <tex> G </tex> новое ребро <tex> e = uv </tex>, получим гамильтонов граф <tex> G + e</tex>. | ||
| Строка 65: | Строка 67: | ||
<tex>\ S \cap T = \varnothing </tex>, иначе в графе <tex> G </tex> есть гамильтонов цикл. Пусть j <tex> \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex> : <tex>\ u_1 - u_{j+1} - u_{j+2} - ... - u_n - u_j - u_{j-1} - ... - u_1 </tex>. | <tex>\ S \cap T = \varnothing </tex>, иначе в графе <tex> G </tex> есть гамильтонов цикл. Пусть j <tex> \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex> : <tex>\ u_1 - u_{j+1} - u_{j+2} - ... - u_n - u_j - u_{j-1} - ... - u_1 </tex>. | ||
Из определений <tex>\ S </tex> и <tex>\ T </tex> следует, что <tex>\ S \cup T \subseteq \{1, 2, ..., n - 1 \} </tex> , поэтому <tex> 2\deg u \le \deg u + \deg v = |S| + |T| = |S \cup T| < n </tex>, то есть <tex>\deg u < n/2 </tex>. <br> | Из определений <tex>\ S </tex> и <tex>\ T </tex> следует, что <tex>\ S \cup T \subseteq \{1, 2, ..., n - 1 \} </tex> , поэтому <tex> 2\deg u \le \deg u + \deg v = |S| + |T| = |S \cup T| < n </tex>, то есть <tex>\deg u < n/2 </tex>. <br> | ||
| − | Так как <tex>\ S \cap T = \varnothing </tex>, ни одна вершина <tex>\ u_j </tex> не смежна с <tex>\ v = u_n </tex> (для <tex>\ j \in S </tex>). Отсюда в силу выбора <tex> u </tex> и <tex> v </tex> имеем <tex>\deg u_j \le \deg u </tex>. Положим <tex>\ k = \deg u </tex>. | + | Так как <tex>\ S \cap T = \varnothing </tex>, ни одна вершина <tex>\ u_j </tex> не смежна с <tex>\ v = u_n </tex> (для <tex>\ j \in S </tex>). Отсюда в силу выбора <tex> u </tex> и <tex> v </tex> имеем <tex>\deg u_j \le \deg u </tex>. Положим, что <tex>\ k = \deg u </tex>. |
Тогда имеется по крайней мере <tex>\ |S| = \deg u = k </tex> вершин, степень которых не превосходит k. <br> | Тогда имеется по крайней мере <tex>\ |S| = \deg u = k </tex> вершин, степень которых не превосходит k. <br> | ||
В силу леммы(I) выполняется : <tex>\ d_k \le k < n/2 </tex>. <br> | В силу леммы(I) выполняется : <tex>\ d_k \le k < n/2 </tex>. <br> | ||
По условию <tex>\ (*) </tex> получаем : <tex>\ d_{n-k} \ge n-k </tex>. <br> | По условию <tex>\ (*) </tex> получаем : <tex>\ d_{n-k} \ge n-k </tex>. <br> | ||
В силу леммы(II) имеется по крайней мере <tex>\ k+1 </tex> вершин, степень которых не меньше <tex>\ n-k </tex>. <br> | В силу леммы(II) имеется по крайней мере <tex>\ k+1 </tex> вершин, степень которых не меньше <tex>\ n-k </tex>. <br> | ||
| − | Так как <tex>\ k = \deg u </tex>, то вершина <tex>\ u </tex> может быть смежна, | + | Так как <tex>\ k = \deg u </tex>, то вершина <tex>\ u </tex> может быть смежна не больше, чем с <tex>\ k </tex> из этих <tex>\ k+1 </tex> вершин. Значит существует вершина <tex>\ w </tex>, не являющаяся смежной с <tex>\ u </tex> и для которой <tex>\deg w \ge n-k </tex>. Но тогда получим <tex>\deg u + \deg w \ge k + (n - k) = n > \deg u + \deg v </tex>, что противоречит выбору <tex>\ u </tex> и <tex>\ v </tex>. <br> |
}} | }} | ||
Версия 00:12, 15 октября 2011
Дан граф , состоящий из вершин, — степень - ой вершины.
Все расположены в порядке неубывания.
верна импликация
| Лемма (I): |
Если , то число вершин, степень которых не превосходит , больше или равно .
Верно и обратное утверждение. |
| Доказательство: |
|
Так как , то уже есть вершин, степень которых не превосходит . Если степени некоторых вершин, следующих за , равны , то число вершин, удовлетворяющих требованию, превышает . |
| Лемма (II): |
Если , то число вершин, степень которых не меньше , больше или равно .
Верно и обратное утверждение. |
| Доказательство: |
|
Так как и , то мы уже получаем вершин, удовлетворяющих нашему требованию. Если степени некоторых вершин, предшествующих , равны , то число вершин, подходящих нашему требованию, превышает |
| Лемма (III): |
# Пусть выполнена для последовательности .
|
| Лемма (IV): |
Если условие верно для некоторой последовательности степеней, то оно верно и для мажорирующей её последовательности. |
| Теорема (Хватал): |
Пусть — связный граф, количество вершин которого не меньше 3. Упорядочим степени вершин по неубыванию.
Если для верна импликация , то — гамильтонов. |
| Доказательство: |
|
Приведем доказательство от противного.
Пусть теорема Хватала не верна, есть граф, где , удовлетворяющий условию , но не гамильтонов.
Будем добавлять в него ребра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым).
Добавление ребер не противоречит условию .
Очевидно, что граф гамильтонов для .
Будем считать максимальным негамильтоновым остовным подграфом графа .
Выберем две несмежные вершины и графа с условием : — максимально.
Будем считать, .
Добавив к новое ребро , получим гамильтонов граф .
Рассмотрим гамильтонов цикл графа : в нем обязательно присутствует ребро . |
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы