Антисимметричное отношение — различия между версиями
Строка 42: | Строка 42: | ||
==См. также== | ==См. также== | ||
− | |||
* [[Бинарное отношение]] | * [[Бинарное отношение]] | ||
* [[Симметричное отношение]] | * [[Симметричное отношение]] |
Версия 01:56, 16 октября 2011
Антисимметрия — одно из важнейших свойств бинарных отношений на множестве.
Содержание
Основные определения
Определение: |
Бинарное отношение на множестве называется антисимметричным, если для любых элементов и множества из выполнения отношений и следует равенство и . |
Или эквивалентное
Определение: |
Бинарное отношение | на множестве называется антисимметричным, если для любых неравных элементов и множества из выполнения отношения следует невыполнение отношения .
Определение антисимметричного отношения как антирефлексивность R.
является избыточным (и потому неверным), поскольку из такого определения также следуетАнтисимметричность отношения не исключает симметричности. Существуют бинарные отношения:
- одновременно симметричные и антисимметричные (отношение равенства);
- ни симметричные, ни антисимметричные;
- симметричные, но не антисимметричные;
- антисимметричные, но не симметричные ("меньше или равно", "больше или равно");
Следует различать антисимметричное и асимметричное бинарные отношения.
Определение: |
Бинарное отношение на множестве называется асимметричным, если для любых элементов и множества одновременное выполнение отношений и невозможно. |
Заметим, что антисимметричное отношение — частный случай асимметричного.
Примеры антисимметричных отношений
Примерами антисимметричных отношений являются, по определению, все отношения полного и частичного порядка( и другие).
Свойства антисимметричного отношения
Если
и - некоторые антисимметричные отношения, то антисимметричными также являются отношения: