Полные системы функций. Теорема Поста о полной системе функций — различия между версиями
м (исправлены мелкие ошибки) |
(удалены части конспекта, которые присутствуют в других конспектах (на которые сделаны ссылки).) |
||
Строка 1: | Строка 1: | ||
== Полная система функций == | == Полная система функций == | ||
− | + | Американский математик Эмиль Пост сформулировал необходимое и достаточное условие [[Представление функции формулой, полные системы функций|полноты системы булевых функций]]. Для этого он ввёл в рассмотрение следующие замкнутые классы булевых функций: | |
− | |||
− | |||
− | |||
* Функции, сохраняющие константу <math>T_0</math> и <math>T_1</math>; | * Функции, сохраняющие константу <math>T_0</math> и <math>T_1</math>; | ||
* Самодвойственные функции <math>S</math>; | * Самодвойственные функции <math>S</math>; | ||
* Монотонные функции <math>M</math>; | * Монотонные функции <math>M</math>; | ||
* Линейные функции <math>L</math>. | * Линейные функции <math>L</math>. | ||
− | |||
− | |||
== Замкнутые классы булевых функций == | == Замкнутые классы булевых функций == | ||
Строка 101: | Строка 96: | ||
В итоге получаем функцию '''НЕ''', а также либо функцию '''И''', либо функцию '''ИЛИ''', но '''НЕ''' образует базис и с той и с другой функциями. Из того, что через функции '''F''' можно выразить базис, следует, что '''F''' {{---}} полная система функций, что и требовалось доказать. | В итоге получаем функцию '''НЕ''', а также либо функцию '''И''', либо функцию '''ИЛИ''', но '''НЕ''' образует базис и с той и с другой функциями. Из того, что через функции '''F''' можно выразить базис, следует, что '''F''' {{---}} полная система функций, что и требовалось доказать. | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Источники == | == Источники == |
Версия 02:38, 19 октября 2011
Содержание
Полная система функций
Американский математик Эмиль Пост сформулировал необходимое и достаточное условие полноты системы булевых функций. Для этого он ввёл в рассмотрение следующие замкнутые классы булевых функций:
- Функции, сохраняющие константу и ;
- Самодвойственные функции ;
- Монотонные функции ;
- Линейные функции .
Замкнутые классы булевых функций
Класс функций
.Определение: |
Говорят, что функция сохраняет константу 0, если | .
Класс функций
.Определение: |
Говорят, что функция сохраняет константу 1, если | .
Класс самодвойственных функций
.Определение: |
Говорят, что функция самодвойственна, если | . Иными словами, функция называется самодвойственной, если на противоположных наборах она принимает противоположные значения.
Класс монотонных функций .
Определение: |
Говорят, что функция монотонна, если | .
Класс линейных функций .
Определение: |
Говорят, что функция линейна, если существуют такие
| , где , что для любых имеет место равенство:
Очевидно, что количество линейных функций от
переменных равно .Функция является линейной тогда, и только тогда, когда в ее полиноме Жегалкина присутствуют слагаемые, каждое из которых зависит не более чем от одной переменной. Построить полином Жегалкина можно с помощью преобразования Мебиуса.
Критерий Поста
Критерий Поста — одна из центральных теорем в теории булевых функций, устанавливающая необходимое и достаточное условие для того, чтобы некоторый набор булевых функций обладал достаточной выразительностью, чтобы представить любую булеву функцию. Впервые сформулирован американским математиком Эмилем Постом в 1941г.
Формулировка и доказательство критерия
Теорема: |
Система булевых функций F является полной тогда и только тогда, когда она не содержится полностью ни в одном из классов , т.е. когда в ней имеется хотя бы одна функция, не сохраняющая 0, хотя бы одна функция, не сохраняющая 1, хотя бы одна несамодвойственная функция, хотя бы одна немонотонная функция и хотя бы одна нелинейная функция. |
Доказательство: |
Заметим, что необходимость этого утверждения очевидна, так как если бы все функции из набора К входили в один из перечисленных классов, то и все суперпозиции, а значит, и замыкание набора входило бы в этот класс и класс К не мог быть полным. Докажем достаточность этого утверждения. Рассмотрим функцию, несохраняющую 0 — . . может принимать два значения:а) , тогда .б) , тогда .Рассмотрим функцию, несохраняющую 1 — . . может принимать два значения:а) , тогда .б) , тогда .Возможны 4 варианта: 1) Мы получили функцию НЕ. Используем несамодвойственную функцию .По определению найдется такой вектор , что . .Возьмем , где , при и , при .Нетрудно заметить, что . Таким образом мы получили одну из констант.2)Мы получили НЕ и . .3)Мы получили НЕ и . .4)Мы получили и .Рассмотрим немонотонную функцию . Существуют такие , что , , зафиксируем все , тогда .В итоге имеем три функции: НЕ, , .Используем нелинейную функцию . Среди нелинейных членов , выберем тот, в котором минимальное количество элементов, все элементы, кроме двух, в этом члене, сделаем равными 1, оставшиеся 2 назовем и , а все элементы, не входящие в данный член, сделаем равными 0. Тогда , где в квадратных скобках указаны члены, которые могут и не присутствовать.Рассмотрим несколько вариантов:
|