Построение по НКА эквивалентного ДКА, алгоритм Томпсона — различия между версиями
(→Построение эквивалентного ДКА по НКА) |
(→Доказательство эквивалентности) |
||
Строка 17: | Строка 17: | ||
<tex>1.</tex> Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. | <tex>1.</tex> Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. | ||
− | Сделаем наблюдение, что если <tex>q \in q_d</tex> и | + | Сделаем наблюдение, что если <tex>q \in q_d</tex>, и <tex>c</tex> является символом перехода, то <tex>\forall p \in \delta(q, c)</tex>: <tex>p \in \delta_D(q_d, c)</tex>. |
Рассмотрим последовательность состояний НКА, когда принимали слово - <tex>(q_1, ..., q_m)</tex> - и последовательность состояний ДКА, когда принимали слово - <tex>({q_d}_1, ..., {q_d}_m)</tex>. | Рассмотрим последовательность состояний НКА, когда принимали слово - <tex>(q_1, ..., q_m)</tex> - и последовательность состояний ДКА, когда принимали слово - <tex>({q_d}_1, ..., {q_d}_m)</tex>. |
Версия 22:00, 21 октября 2011
Содержание
Построение эквивалентного ДКА по НКА
НКА:
.ДКА, описанный в следующих строках является эквивалентным НКА.
ДКА:
, где:- .
- .
- при условии, что .
Доказательство эквивалентности
Теорема: |
Построенный ДКА эквивалентен данному НКА. |
Доказательство: |
Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Сделаем наблюдение, что если , и является символом перехода, то : .Рассмотрим последовательность состояний НКА, когда принимали слово - - и последовательность состояний ДКА, когда принимали слово - .Мы знаем, что - терминальная, так как НКА принимает слово. Надо доказать, что - терминальная.Заметим, что - так как это стартовые состояния, а, значит, по нашему наблюдению и так далее. Получается, что . Мы знаем, что - терминальная вершина, а, значит, по определению терминальной вершины в нашем ДКА, что - тоже терминальная.Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Рассмотрим последовательность состояний ДКА, когда принимали слово - .Сделаем наблюдение, что если , соответствует множеству из одного элемента - , и мы из него достигли по строке какого-то состояния , то : существует путь из в в НКА по строке .А так как - стартовое состояние, соответствует множеству из одного элемента - - стартовое состояние. Мы из достигли , возьмём любое терминальное состояние - по нашему наблюдению, в НКА есть путь из в по нужной строке, а, значит, что НКА принимает это слово.Получается, что мы доказали, что если НКА принимает слово, равносильно тому, что ДКА его тоже принимает. А это означает, что автоматы эквивалентны. |
Алгоритм Томпсона
Данный алгоритм преобразовывает НКА в эквивалентный ДКА. Мы будем использовать предыдущий алгоритм построения с одним дополнением - нам не нужны состояния недостижимые из стартового.
Поэтому в алгоритме используется обход в ширину.
Алгоритм
- очередь состояний, соответствующих множествам, состоящих из состояний НКА. - стартовое состояние НКА.
1:2: 3: 4: 5: 6: 7: 8: ) 9: 10: 11:
Верхняя оценка на работу алгоритмы -
- так как количество подмножеств множества состояний НКА не более, чем , а каждое подмножество мы обрабатываем за и ровно один раз.